www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Funktionsgrenzwert
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Funktionsgrenzwert

Universität

Seien $ (X,d)\, $ und $ (Y,e)\, $ metrische Räume und sei $ f \colon X \to Y $ eine Funktion (zwischen den beiden metrischen Räumen; man schreibt dafür auch oft einfach $ f \colon (X,d) \to (Y,e). $). Sei $ x_0 $ ein Häufungspunkt (Menge) der Menge X. Die $ \epsilon-\delta- $ (besser: $ \epsilon-\delta-x_0- $) Definition des Begriffes Funktionsgrenzwert an der Stelle $ \mathbf{x_0} $ (siehe auch Grenzwert) lautet wie folgt:

Man sagt, $ f\, $ habe an der Stelle $ x_0 $ einen Funktionsgrenzwert, wenn gilt:
Es existiert ein $ g \in Y $ so, dass

   $ \forall \epsilon > 0 \exists \delta=\delta_{x_0,\epsilon} > 0:\;\;\forall x \in X: \;\;0 \blue{\;<\;}d(x,x_0) < \delta \Longrightarrow e(f(x),\blue{\;g\;}) < \epsilon. $

Falls ein $ g\, $ wie oben existiert, so schreibt man auch $ \lim_{x \to x_0}f(x):=g. $ Man beachte dabei, dass das Symbol $ \lim_{x \to x_0}f(x) $ für den Funktionsgrenzwert von $ f\, $ an der Stelle $ x_0 $ im Sinne von $ \lim_{x_0 \not=x \to x_0}f(x) $ verwendet wird. Beachtenswert ist dabei insbesondere, dass weder $ f\, $ an der Stelle $ x_0 $ zu definiert sein braucht, noch, dass, falls $ x_0 \in X $ gilt, auch $ \lim_{x \to x_0}f(x)=f(x_0) $ gelten muss. Falls allerdings $ x_0 \in X $ gilt, so ist $ f\, $ genau dann stetig in $ x_0 \in X, $ falls $ \lim_{x \to x_0}f(x)=f(x_0) $ gilt.

Beispiel(e):
Betrachten wir

   $ g \colon \IR \to \IR $


mit g(3):=2 und g(x):=1 für alle $ x \in \IR \setminus \{3\}. $ Ferner betrachten wir $ h:=g_{|\IR \setminus \{3\}}\,. $

Dann gilt mit $ x_0:=3 $ sowohl $ \lim_{x \to x_0}g(x)=\lim_{x \to 3}g(x)=1 $ als auch $ \lim_{x \to x_0}h(x)=\lim_{x \to 3}h(x)=1\,, $ obwohl zum einen $ g(x_0)=g(3)=2 \not=1 $ ist als auch zum anderen $ h(3)\, $ gar nicht existiert.

Beweis:
Sei $ \epsilon > 0\,. $ Sogar für jedes $ \delta > 0 $ gilt: Für $ 0 < |x-3| < \delta $ folgt (weil dann $ g(x)=1\, $ wegen $ x \not=3 $ ist)

   $ |g(x)-1|=|1-1|=0 < \epsilon\,. $


Analog auch:
Sei $ \epsilon > 0\,. $ Sogar für jedes $ \delta > 0 $ gilt: Für $ 0 < |x-3| < \delta $ folgt (weil dann $ h(x)=1\, $ wegen $ x \not=3 $ ist)

   $ |h(x)-1|=|1-1|=0 < \epsilon\,. $

$ \Box $

Letzte Änderung: Di 18.06.2013 um 11:22 von Marcel
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]