www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektor eindeutige Darstellung
Vektor eindeutige Darstellung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor eindeutige Darstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Di 23.11.2010
Autor: avre

Aufgabe
Es seien V ein Vektorraum über R und T = [mm] (a_{1},...,a_{n}) [/mm] C V eine Basis von V. Wir definieren [mm] a_{n+1} [/mm] := [mm] -\summe_{v=1}^{n} a_{v} [/mm] .
Zeige: Jeder Vektor a [mm] \in [/mm] V besitzt eine eindeutige Darstellung der Form
a = [mm] \summe_{v=1}^{n+1} \alpha_{v} a_{v} [/mm] mit [mm] \alpha_{1},....,\alpha_{n+1} \in [/mm] R und [mm] \summe_{v=1}^{n+1} \alpha_{v} [/mm] = 0.

Kann mir hier jemand helfen was ich hier machen muss. Bzw wie ich die eindeutige Darstellung beweise.

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektor eindeutige Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 Di 23.11.2010
Autor: Sax

Hi,

siehe hier

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]