www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Topologischer Raum (2)
Topologischer Raum (2) < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologischer Raum (2): Korrektur
Status: (Frage) überfällig Status 
Datum: 08:59 Mi 30.05.2012
Autor: chesn

Aufgabe
X sei eine nicht endliche Menge, $ [mm] \mathcal{O} [/mm] $ sei die Familie der Mengen, die aus $ [mm] \emptyset [/mm] $ und allen Komplementen von endlichen Teilmengen von X besteht. Zeigen Sie, dass $ [mm] (X,\mathcal{O}) [/mm] $ ein topologischer Raum ist.

Die Frage wurde hier schon gestellt. Leider ist der Thread recht lang und daher teile ich ihn jetzt in 3 einzelne Fragen auf.

Eine Korrektur wäre nett! :)

(i) $ [mm] \emptyset \in \mathcal{O}. [/mm] $ Nun ist $ [mm] \emptyset [/mm] $ ebenfalls endliche Teilmenge von X, also das Komplement $ [mm] \overline{\emptyset}=X\backslash\emptyset=X \in \mathcal{O}. [/mm] $

(ii) Sei $ [mm] U_i [/mm] $ endliche Teilmenge von X. => $ [mm] \overline{U_i}\in\mathcal{O}. [/mm] $

Weiter ist $ [mm] \bigcap_{i\in I}U_i \in [/mm] X $ endliche Teilmenge von X.

=> $ [mm] \overline{\bigcap_{i\in I}U_i} \in \mathcal{O} [/mm] $

und das Komplement vom Durchschnitt ist die Vereinigung der Komplemente der $ [mm] U_i, [/mm] $ also:

$ [mm] \overline{\bigcap_{i\in I}U_i}=\bigcup_{i\in I}\overline{U_i} [/mm] $ Es folgt: $ [mm] \overline{U_i}\in\mathcal{O} [/mm] => [mm] \bigcup_{i\in I}\overline{U_i} \in \mathcal{O} [/mm] $

(iii) Seien $ [mm] U_1,...,U_n \in [/mm] $ X endlich. => $ [mm] \overline{U_1},...,\overline{U_n}\in\mathcal{O} [/mm] $

Weiter ist $ [mm] \bigcup_{i=1}^n{U_i}\in [/mm] X $ endlich. => $ [mm] \overline{\bigcup_{i=1}^n{U_i}}\in\mathcal{O} [/mm] $

Das Komplement der Vereinigung ist der Durchschnitt der Komplemente der $ [mm] U_i. [/mm] $ Also:

$ [mm] \overline{\bigcup_{i=1}^n{U_i}}=\bigcap_{i=1}^n{\overline{U_i}} [/mm] $ Also: $ [mm] \overline{U_1},...,\overline{U_n}\in\mathcal{O} [/mm] => [mm] \bigcap_{i=1}^n{\overline{U_i}}\in\mathcal{O} [/mm] $

Ist das soweit nachvollziehbar?

Vielen Dank und liebe Grüße,
chesn

        
Bezug
Topologischer Raum (2): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Fr 01.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]