www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Summenregel und Faktorregel
Summenregel und Faktorregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 23.02.2011
Autor: Kreuzkette

Soo, nach langem Suchen hoffe ich, dass mir hier geholfen werden kann..

Habe schon woanders und in bereits vorhanden foren gesucht, aber es entweder nicht nachvollziehen können oder es war was anderes.

Ich soll eine Gleichung der Tangente und der Normalen an den Graphen von f in P(x0,f(x0)) bestimmen.

gegeben ist: f(x)=8x - 2/3 x³; x0=3/2

nun würde ich zuerst die ableitung f'bilden?!:
also: f(x) = -2x² + 8

wie geht es weiter?
könnt ihr mir helfen?
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,


[willkommenmr]


> Soo, nach langem Suchen hoffe ich, dass mir hier geholfen
> werden kann..
>  
> Habe schon woanders und in bereits vorhanden foren gesucht,
> aber es entweder nicht nachvollziehen können oder es war
> was anderes.
>  
> Ich soll eine Gleichung der Tangente und der Normalen an
> den Graphen von f in P(x0,f(x0)) bestimmen.
>  
> gegeben ist: f(x)=8x - 2/3 x³; x0=3/2
>  
> nun würde ich zuerst die ableitung f'bilden?!:
>  also: f(x) = -2x² + 8
>  
> wie geht es weiter?


Jetzt bilde aus den berechneten Wertean an der Stelle [mm]x_[0}[/mm] eine Gerade.

Verwende dazu  die  Punkt-Steigungs-Form einer Geraden.


>  könnt ihr mir helfen?
>  lg
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 23.02.2011
Autor: Kreuzkette

dann habe ich..

y=8 (x-3/2) + 2/3 x³



Bezug
                        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,

> dann habe ich..
>  
> y=8 (x-3/2) + 2/3 x³
>  
>  


Du hast Doch folgende Gleichung:

[mm]\bruch{y-f\left(x_{0}\right)}{x-x_{0}}=f'\left(x_{0}\right)[/mm]

Diese Gleichung jetzt nach y auflösen.


Gruss
MathePower

Bezug
                                
Bezug
Summenregel und Faktorregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Mi 23.02.2011
Autor: Kreuzkette

dann habe ich..

y= f`(x0) * (x-x0) +f(x0)

lg

Bezug
                                        
Bezug
Summenregel und Faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Mi 23.02.2011
Autor: MathePower

Hallo Kreuzkette,

> dann habe ich..
>  
> y= f'(x0) * (x-x0) +f(x0)
>  


Und jetzt den Funktionswert und den Ableitungswert
an der Stelle [mm]x_{0}[/mm] einsetzen.


> lg


Gruss
MathePower

Bezug
                                                
Bezug
Summenregel und Faktorregel: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:15 Mi 23.02.2011
Autor: Kreuzkette

also:

y= f`(3/2) * (x-3/2) + f(3/2)

sonst kann ichs nicht :(

Bezug
                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Mi 23.02.2011
Autor: Adamantin


> also:
>  
> y= f'(3/2) * (x-3/2) + f(3/2)
>  
> sonst kann ichs nicht :(

[ok] völlig richtig

Das kannst du doch ausrechnen! f'(x) hast du selbst im ersten Post hingeschrieben, jetzt setzte da [mm] x_0 [/mm] ein! [mm] f(x_0) [/mm] hast du ebenfalls schnell heraus, setzte einfach [mm] x_0 [/mm] in f(x) ein ;) Und danach klammerst du noch aus und hast deine Gleichung, oder noch andere Probleme? ;)

Bezug
                                                                
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Mi 23.02.2011
Autor: Kreuzkette

und was habe ich dann?
kann mir das nicht einmal einer vorrechnen, oder mit zahlen zeigen?
ich blick da langsam echt nicht mehr durch, tut  mir leid..


Bezug
                                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Mi 23.02.2011
Autor: Adamantin

f(x)=8x - 2/3 x³
x0_= [mm] \bruch{3}{2} [/mm]
f'(x) = -2x² + 8

also:

[mm] y=[-2*(\bruch{3}{2})^2+8]*(x-\bruch{3}{2})+8*\bruch{3}{2}-\bruch{2}{3}*(\bruch{3}{2})^3 [/mm]

Bezug
                                                                                
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mi 23.02.2011
Autor: Kreuzkette

danke schonmal, so kann ich das aufjedenfall schonmal besser nachvollziehen..
nur, habe ich jetzt die normale oder tangente?

Bezug
                                                                                        
Bezug
Summenregel und Faktorregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Mi 23.02.2011
Autor: Adamantin

Was glaubst du denn? ;)

Die Steigung m im Punkt [mm] x_0 [/mm] ist [mm] f'(x_0), [/mm] korrekt? Diese Steigung haben wir in der Gleichung der Tangenten auch benutzt, daher ist es die Tangente. Die Normale steht orthogonal auf der Tangenten, hat also die Steigung:

[mm] m_t*m_n=-1 [/mm] => [mm] m_n=-\bruch{1}{m_t} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]