www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Hornerschema
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Hornerschema

Schule


Das Horner-Schema vereinfacht die Berechnung von Funktionswerten



Beispiel anhand einer Polynomfunktion 3.Grades

Die allgemeine Darstellung einer Polynomfunktion 3.Grades lautet


$ f(x)=a_3x^3+a_2x^2+a_1x+a_0 $

Ist von dieser Funktion eine Nullstelle $ x_0 $ bekannt, so lässt sich der Linearfaktor $ (x-x_0) $ abspalten und die Funktion 3.Grades geht in eine Funktion 2.Grades ohne Restpolynom r(x) über


$ (a_3x^3+a_2x^2+a_1x+a_0):(x-x_0)=b_2x^2+b_1x+b_0+\underbrace{r(x)}_{=\red{0}} $

Die Bestimmung der Koeffizienten des reduzierten Polynoms erfolgt nach folgender Systematik


$ b_2=a_3 $

$ b_1=a_2+a_3x_0 $

$ b_0=a_1+a_2x_0+a_3x_0^2 $

$ r(x)=\bruch{a_0+a_1x_0+a_2x^2_0+a_3x_0^3}{x-x_0} $

Das Verfahren ist nicht nur gültig für Polynome beliebiger Ordnung sondern auch für Stellen, welche keine Nullstellen sind.



Zahlenbeispiel


$ f(x)=3x^3+3x^2-3x-3 $

Man findet leicht eine Nullstelle bei $ x_0=-1 $

Dann ist


$ (3x^3+3x^2-3x-3):(x+1)=3x^2-3 $

weil


$ b_2=a_3=\blue{3} $

$ b_1=a_2+a_3x_0=3+3\cdot{}(-1)=\blue{0} $

$ b_0=a_1+a_2x_0+a_3x_0^2=-3+3\cdot{}(-1)+3\cdot{}(-1)^2=\blue{-3} $

$ r(x)=\bruch{a_0+a_1x_0+a_2x^2_0+a_3x_0^3}{x-x_0}=\bruch{-3-3\cdot{}(-1)+3\cdot{}(-1)^2+3\cdot{}(-1)^3}{x+1}=\bruch{\red{0}}{x+1} $




Nun das gleiche Beispiel noch einmal, wobei diesmal $ x_0=2 $ gewählt ist (keine Nullstelle der Funktion)


$ f(x)=3x^3+3x^2-3x-3 $

Dann ist


$ (3x^3+3x^2-3x-3):(x-2)=3x^2+9x+15+\bruch{27}{x-2} $

weil


$ b_2=a_3=\blue{3} $

$ b_1=a_2+a_3x_0=3+3\cdot{}(2)=\blue{9} $

$ b_0=a_1+a_2x_0+a_3x_0^2=-3+3\cdot{}(2)+3\cdot{}(2)^2=\blue{15} $

$ r(x)=\bruch{a_0+a_1x_0+a_2x^2_0+a_3x_0^3}{x-x_0}=\bruch{-3-3\cdot{}(2)+3\cdot{}(2)^2+3\cdot{}(2)^3}{x-2}=\bruch{27}{x-2} $



gute Erklärungen:

[link]http://members.chello.at/gut.jutta.gerhard/kurs/horner.htm
[link]http://www.zum.de/Faecher/M/NRW/pm/mathe/horner.htm

Erstellt: Mo 28.02.2005 von informix
Letzte Änderung: Do 05.11.2009 um 09:41 von Herby
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]