www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - zyklische Untergruppe
zyklische Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Untergruppe: Verständnis der Lösung
Status: (Frage) beantwortet Status 
Datum: 15:09 Do 18.10.2007
Autor: Felica

Aufgabe
(Z,*) mit a*b=a+b-k
Bestimmen Sie die von 8 erzeugte zyklische Untergruppe <8>

Hallo,

dies ist das erste Mal, dass ich an ein Forum schreibe...hoffentlich mache ich keine zu großen Fehler....

Zu obiger Aufgabe gab es folgende Lösung:

[mm] a^n=8n-(n-1)k [/mm]

<8>={...,-16+3k,-8+2k,k,8,16-k,24-2k,36-3k,...}

Ist es richtig, dass die Angaben zu <8> durch das Einsetzten von Zahlen für n zustande kommen?
Leider ist mir bei dieser Lösung völlig unklar, wie man auf
[mm] a^n=8n-(n-1)k [/mm] kommt.

Bin für jede Erklärung dankbar!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
zyklische Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Do 18.10.2007
Autor: angela.h.b.


> (Z,*) mit a*b=a+b-k
>  Bestimmen Sie die von 8 erzeugte zyklische Untergruppe
> <8>

Hallo,

[willkommenmr].

Die von 8 erzeugte zyklische Gruppe ist ja so definiert:

[mm] <8>:=\{8^n| n\in \IZ}. [/mm]

Sie umfaßt also alle ganzzahligen Potenzen von 8.

Nun laß uns schauen, was [mm] 8^2 [/mm] ergibt:

[mm] 8^2=8\* [/mm] 8=8+8-k=16-k

[mm] 8^3=8^2\* [/mm] 8=...

Nun mußt Du darüber nachdenken, welches hier das neutrale Element [mm] e=8^0 [/mm] ist.

Es muß ja für alle a [mm] \in \IZ [/mm] gelten:  [mm] a=e\* [/mm] a= e+a-k   ==> e=...

Nun benötigst Du noch die negativen Potenzen, was nicht schwierig ist, wenn man erstmal [mm] 8^{-1} [/mm] kennt.

Wie erhält man [mm] 8^{-1}? [/mm] Es muß ja gelten [mm] e(0...)=8\*8^{-1}=8+8^{-1}-k, [/mm] also ist [mm] 8^{-1}=... [/mm]

Hieraus bekommst Du dann die anderennegativen Potenzen.


> Zu obiger Aufgabe gab es folgende Lösung:
>  
> [mm]a^n=8n-(n-1)k[/mm]

Hier ist sicher gemeint [mm] 8^n=8n-(n-1)k. [/mm]

Wenn Du inzwischen alles wie oben berechnet hast, wirst Du wissend mit dem Kopf nicken und sagen: ja, stimmt.

Du könntest es noch per Induktion beweisen, wenn Du "Mathematik für Mathematiker" hörst, MUSST Du es beweisen.

Gruß v. Angela

>  
> <8>={...,-16+3k,-8+2k,k,8,16-k,24-2k,36-3k,...}


Bezug
                
Bezug
zyklische Untergruppe: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Do 18.10.2007
Autor: Felica


> Hier ist sicher gemeint [mm]8^n=8n-(n-1)k.[/mm]

Stimmt, da hatte ich mich vertippt.

Tausend Dank für die gute Erklärung!
Habe auch nicht damit gerechnet, so schnell Antwort zu bekommen! Danke nochmal. :-)










Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]