www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - zwei komplexe Zahlen multipliz
zwei komplexe Zahlen multipliz < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zwei komplexe Zahlen multipliz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 So 18.11.2012
Autor: betina

Aufgabe
Ermitteln Sie den Real-und Imaginärteil von (3+2i)*(3-2i)

Hallo

nach dem ich jetzt endlich mit der Klausurvorbereitung von Betragsungleichungen fertig bin, gehts jetzt weiter mit komplexen Zahlen.

Wenn ich so ne Aufgabe wie oben in der Klausur sehe, fällt mir dabei die 3.binomische Formel ein. (3+2i)*(3-2i).

Die allgemeine 3.binomische Formel lautet ja (a+b)*(a-b) = [mm] a^{2} [/mm] - [mm] b^{2}. [/mm] Wenn ich das jetzt auf diese Aufgabe beziehe ist doch das a = 3 und das b = 2 beim "b" muss ich schließlich noch das "i" beachten

Letztendlich erhalte ich dann für diese Aufgabe  (3+2i)*(3-2i) = 9 - [mm] 4i^{2} [/mm]

Ist mein Ergebnis richtig??

Danke eure Kontrolle

        
Bezug
zwei komplexe Zahlen multipliz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 So 18.11.2012
Autor: Diophant

Hallo,

> Ermitteln Sie den Real-und Imaginärteil von (3+2i)*(3-2i)
> Hallo
>
> nach dem ich jetzt endlich mit der Klausurvorbereitung von
> Betragsungleichungen fertig bin, gehts jetzt weiter mit
> komplexen Zahlen.
>
> Wenn ich so ne Aufgabe wie oben in der Klausur sehe, fällt
> mir dabei die 3.binomische Formel ein. (3+2i)*(3-2i).
>
> Die allgemeine 3.binomische Formel lautet ja (a+b)*(a-b) =
> [mm]a^{2}[/mm] - [mm]b^{2}.[/mm] Wenn ich das jetzt auf diese Aufgabe beziehe
> ist doch das a = 3 und das b = 2 beim "b" muss ich
> schließlich noch das "i" beachten
>
> Letztendlich erhalte ich dann für diese Aufgabe
> (3+2i)*(3-2i) = 9 - [mm]4i^{2}[/mm]
>
> Ist mein Ergebnis richtig??

Ja, bis dahin schon. Du bist aber noch nicht fertig, da bekanntlich [mm] i^2=-1 [/mm] ist. :-)


Gruß, Diophant

Bezug
                
Bezug
zwei komplexe Zahlen multipliz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 So 18.11.2012
Autor: betina

Da [mm] i^{2} [/mm] doch -1 ist würde ich jetzt für das "i" hinter der 4 die -1 einsetzen

9 - 4 [mm] i^{2} [/mm] = 9 - 4*(-1)  =  13

13 müsste dann das Endergbnis sein

Irgendwas falsch gemacht?

Bezug
                        
Bezug
zwei komplexe Zahlen multipliz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 18.11.2012
Autor: fred97


>  Da [mm]i^{2}[/mm] doch -1 ist würde ich jetzt für das "i" hinter
> der 4 die -1 einsetzen
>  
> 9 - 4 [mm]i^{2}[/mm] = 9 - 4*(-1)  =  13
>  
> 13 müsste dann das Endergbnis sein
>  
> Irgendwas falsch gemacht?

Nein.

FRED


Bezug
        
Bezug
zwei komplexe Zahlen multipliz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 18.11.2012
Autor: fred97

Merke: $z* [mm] \overline{z}=|z|^2 \in \IR$ [/mm]

FRED

Bezug
                
Bezug
zwei komplexe Zahlen multipliz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 So 18.11.2012
Autor: betina

Danke für eure Hilfe/Kontrolle :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]