www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - zusammenziehbar, wegzsh.
zusammenziehbar, wegzsh. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zusammenziehbar, wegzsh.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:05 Sa 04.06.2016
Autor: impliziteFunktion

Aufgabe
Ein Raum $X$ heißt zusammenziehbar, falls er homotop zu einem Ein-Punkt-Raum ist.
Zeigen Sie, dass jeder zusammenziehbare Raum wegzusammenhängend ist.

Hallo,

ich möchte diese Aussage beweisen und bin wie folgt vorgegangen:

Damit ein Raum $X$ wegzusammenhängend ist, muss für alle $x, [mm] x'\in [/mm] X$ ein Weg $w$ in $X$ existieren, mit $w(0)=x'$ und $w(1)=x$.

Da [mm] $X\sim\{x_0\}$, [/mm] gibt es stetige Abbildungen $f, g$ mit [mm] $f:X\to\{x_0\}$ [/mm] und [mm] $g:\{x_0\}\to [/mm] X$ so, dass [mm] $f\circ g\sim id_{\{x_0\}}$ [/mm] und [mm] $g\circ f\sim id_X$. [/mm]

Wegen [mm] $g\circ f\sim id_X$, [/mm] gibt es also eine stetige Abbildung

[mm] $H:X\times[0,1]\to [/mm] X$ mit [mm] $H_0:=H(-,0)=g\circ [/mm] f$ und [mm] $H_1:=H(-,1)=id_X$. [/mm]

Dann ist [mm] $H(x,0)=g\circ [/mm] f(x):=x'$ und $H(x,1)=x$

Also ist $X$ wegzusammenhängend. Da [mm] $w_t:[0,1]\to [/mm] X$ mit [mm] $w_t(x):=H(t,x)$ [/mm] stetig.


Geht das so in Ordnung?
Vielen Dank im voraus.

        
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Mo 06.06.2016
Autor: huddel

Ich weiß nicht, ob das einfach zu lange her ist, aber hier meine Gedanken dazu :D

> Ein Raum [mm]X[/mm] heißt zusammenziehbar, falls er homotop zu
> einem Ein-Punkt-Raum ist.
> Zeigen Sie, dass jeder zusammenziehbare Raum
> wegzusammenhängend ist.
>  Hallo,
>  
> ich möchte diese Aussage beweisen und bin wie folgt
> vorgegangen:
>  
> Damit ein Raum [mm]X[/mm] wegzusammenhängend ist, muss für alle [mm]x, x'\in X[/mm]
> ein Weg [mm]w[/mm] in [mm]X[/mm] existieren, mit [mm]w(0)=x'[/mm] und [mm]w(1)=x[/mm].
>  
> Da [mm]X\sim\{x_0\}[/mm], gibt es stetige Abbildungen [mm]f, g[/mm] mit
> [mm]f:X\to\{x_0\}[/mm] und [mm]g:\{x_0\}\to X[/mm] so, dass [mm]f\circ g\sim id_{\{x_0\}}[/mm]
> und [mm]g\circ f\sim id_X[/mm].

ich bin etwas verwirrt, was ist denn eure definition von zusammenziehbar, oder besser, warum folg das aus zusammenziehbar? Habt ihr das bewiesen? Und was ist [mm] $x_0$? [/mm]

> Wegen [mm]g\circ f\sim id_X[/mm], gibt es also eine stetige
> Abbildung
>
> [mm]H:X\times[0,1]\to X[/mm] mit [mm]H_0:=H(-,0)=g\circ f[/mm] und
> [mm]H_1:=H(-,1)=id_X[/mm].

ok die Folgerungen passen

> Dann ist [mm]H(x,0)=g\circ f(x):=x'[/mm] und [mm]H(x,1)=x[/mm]

warum kannst du dir [mm] $g\circ [/mm] f(x)$ so wählen. Oben hieß es nur, dass sie existieren. was genau diese machen weiß man nicht.

> Also ist [mm]X[/mm] wegzusammenhängend. Da [mm]w_t:[0,1]\to X[/mm] mit
> [mm]w_t(x):=H(t,x)[/mm] stetig.

Was ist jetzt $t$?

> Geht das so in Ordnung?
>  Vielen Dank im voraus.

Ich würde direkt über die Definition gehen: du weißt $X$ ist zusammenziehbar. Also existiert eine Stetige Abbildung [mm] $H\colonX\times [/mm] [0,1] [mm] \to [/mm] X$ und ein Punkt [mm] $x_0 \in [/mm] X$ s.d. $H(x,0) = x$ und $H(x,1) = [mm] x_0$ [/mm] f.a. [mm] $x\in [/mm] X$.
Jetzt seien $x,x' [mm] \in [/mm] X$. Wie bastelst du dir nun einen Weg zusammen, der $x$ und $x'$ verbindet?

LG
Huddel


Bezug
                
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Mo 06.06.2016
Autor: impliziteFunktion


> was ist denn eure definition von zusammenziehbar

Die Definition ist in der Aufgabenstellung gegeben. Wir haben es nicht in der Vorlesung definiert.

[mm] $x_0\in [/mm] X$. Und ich nutze die Definition von [mm] $X\sim \{x_0\}$, [/mm] also die Homotopie.


> Wie bastelst du dir nun einen Weg zusammen, der $ x $ und $ x' $ verbindet?

Hmm, ich würde es eigentlich wie in meiner Frage machen. Ich weiß, dass $H$ stetig ist und wähle diese Funktion als Weg, der $x$ und [mm] $x_0$ [/mm] verbindet.

Bezug
                        
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:26 Mo 06.06.2016
Autor: huddel

dann gib mir doch mal anhand von $H$ eine direkte Definition des Weges an :)
das geht ziemlich expliziet

Bezug
                                
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:27 Mo 06.06.2016
Autor: impliziteFunktion

Habe ich das in der ursprünglichen Frage nicht getan?

> Also ist $ X $ wegzusammenhängend. Da $ [mm] w_t:[0,1]\to [/mm] X $ mit $ [mm] w_t(x):=H(t,x) [/mm] $ stetig.

Bezug
                                        
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:26 Mi 08.06.2016
Autor: impliziteFunktion

Hat hierzu noch jemand eine Meinung?

Vielen Dank.

Bezug
                                                
Bezug
zusammenziehbar, wegzsh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Fr 10.06.2016
Autor: huddel

jetzt versteh ich langsam, was du sagen möchtest... so stimmt aber an deinen Aussagen etwas nicht ganz

> Ein Raum $ X $ heißt zusammenziehbar, falls er homotop zu
> einem Ein-Punkt-Raum ist.
> Zeigen Sie, dass jeder zusammenziehbare Raum
> wegzusammenhängend ist.
>  Hallo,
>  
> ich möchte diese Aussage beweisen und bin wie folgt
> vorgegangen:
>  
> Damit ein Raum $ X $ wegzusammenhängend ist, muss für alle $ x, [mm] x'\in [/mm] X $
> ein Weg $ w $ in $ X $ existieren, mit $ w(0)=x' $ und $ w(1)=x $.
>  
> Da $ [mm] X\sim\{x_0\} [/mm] $, gibt es stetige Abbildungen $ f, g $ mit
> $ [mm] f:X\to\{x_0\} [/mm] $ und $ [mm] g:\{x_0\}\to [/mm] X $

bis hier hin richtig. klar existieren derartige Funktionen, aber dazu brauchst du kein Zusammenziehbar. So wie du das aufgeschgeschrieben hast, sind beide Funktionen konstant.
Ich denke was du sagen wolltest ist, dass es für alle $x,x' [mm] \in [/mm] X$ Wege $f,g$ in $X$ gibt, s.d. $f$ die beiden Punkte $x$ und [mm] $x_0$ [/mm] verbindet und $g$ die beiden Punkte [mm] $x_0$ [/mm] und $x'$ verbindet.

> so, dass $ [mm] f\circ g\sim id_{\{x_0\}} [/mm] $
> und $ [mm] g\circ f\sim id_X [/mm] $.

Dann würde diese Aussage auch wieder Sinn ergeben, auch wenn ich bei $ [mm] f\circ g\sim id_{\{x_0\}} [/mm] $ und $ [mm] g\circ f\sim id_X [/mm] $ wieder interpretieren muss was damit gemeint ist

Ich denke damit sollte der Rest dann auch passen



Im Grunde ist das ganze ein Vierzeiler:

Achtung Spoiler:





$X$ zusammenziehbar [mm] $\Rightarrow$ [/mm] es ex. Homotopie [mm] $H\colon [/mm] X [mm] \times [/mm] [0,1] [mm] \to [/mm] X$ und [mm] $x_0 \in [/mm] X$ s.d. [mm] $\forall x\in [/mm] X:$ $H(x,0)=x$ und $H(x,1) = [mm] x_0$ [/mm] ist
Seien $x,x' [mm] \in [/mm] X$, dann definiere [mm] $\omega(t) [/mm] = H(x,t)$ und [mm] $\omega [/mm] '(t) = H(x',1-t)$
Definiere weiter [mm] $\gamma(t) [/mm] = [mm] \omega(2t)$ [/mm] für [mm] $0\leq t\leq \frac{1}{2}$ [/mm] und [mm] $\gamma(t) [/mm] = [mm] \omega'(2t-1)$ [/mm] für [mm] $\frac{1}{2}\leq t\leq [/mm] 1$
damit ist [mm] $\gamma$ [/mm] stetig und [mm] $\gamma(0) [/mm] = x$ und [mm] $\gamma(1) [/mm] = x'$, womit die Behauptung folgt.

Bezug
        
Bezug
zusammenziehbar, wegzsh.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 11.06.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]