www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - zusammengesetzter Dreisatz
zusammengesetzter Dreisatz < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zusammengesetzter Dreisatz: Frage / Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:25 So 27.02.2011
Autor: blubb2202

Aufgabe
1. Mit 6 Helferinnen kann ein Zahnarzt 48 Patienten pro Tag behandeln. Dabei entfallen von der Sprechstundenzeit 100 Minuten auf die Vorbereitung der Patienten und das Aufräumen einschließlich Nebenarbeiten. Für den folgenden Behandlungstag stehen nur 5 Helferinnen zur Verfügung. Aufgrund umfangreicher Prothetikarbeiten werden für die Vorbereitung der Patienten und die Nebenarbeiten 150 Minuten kalkuliert. Wie viel Patienten dürfen an diesem Tag bestellt werden?

Hallo,

ich hätte eine Frage zu der oben gestellten Aufgabe, und zwar:
Ich bekomme das Ergebnis 60 heraus, in der Schule sind wir aber auf das Ergebnis 26,7 raus.
Ich schreibe einfach mal meinen Ansatz:

6 Helfer benötigen 100 Minuten für 48 Patienten
5 Helfer benötigen 150 Minuten für x Patienten

=>
[mm] \left( \bruch{6}{5} \right) [/mm] = [mm] \left( \bruch{48}{x} \right) [/mm] , da es ja proportional ist => [mm] \left( \bruch{48 * 5}{6} \right) [/mm]

und
[mm] \left( \bruch{48}{x} \right) [/mm] = [mm] \left( \bruch{100}{150} \right) [/mm] => [mm] \left( \bruch{48 * 150}{100} \right) [/mm]
Das ist mein Ansatz, da es in meinen Augen proportional ist, in der Schule haben wir allerdings den Ansatz als antiproportional betrachtet, darin liegt auch der Grund der unterschiedlichen Ergebnisse.

Habe ich einen Denkfehler gemacht, oder ist dem Lehrer dort ein Fehler unterlaufen?

Ich danke im voraus!

        
Bezug
zusammengesetzter Dreisatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 So 27.02.2011
Autor: MathePower

Hallo blubb2202,

> 1. Mit 6 Helferinnen kann ein Zahnarzt 48 Patienten pro Tag
> behandeln. Dabei entfallen von der Sprechstundenzeit 100
> Minuten auf die Vorbereitung der Patienten und das
> Aufräumen einschließlich Nebenarbeiten. Für den
> folgenden Behandlungstag stehen nur 5 Helferinnen zur
> Verfügung. Aufgrund umfangreicher Prothetikarbeiten werden
> für die Vorbereitung der Patienten und die Nebenarbeiten
> 150 Minuten kalkuliert. Wie viel Patienten dürfen an
> diesem Tag bestellt werden?
>  Hallo,
>  
> ich hätte eine Frage zu der oben gestellten Aufgabe, und
> zwar:
>  Ich bekomme das Ergebnis 60 heraus, in der Schule sind wir
> aber auf das Ergebnis 26,7 raus.
>  Ich schreibe einfach mal meinen Ansatz:
>  
> 6 Helfer benötigen 100 Minuten für 48 Patienten
>  5 Helfer benötigen 150 Minuten für x Patienten
>  
> =>
> [mm]\left( \bruch{6}{5} \right)[/mm] = [mm]\left( \bruch{48}{x} \right)[/mm]
> , da es ja proportional ist => [mm]\left( \bruch{48 * 5}{6} \right)[/mm]


Soweit ist das ok.


>  
> und
>   [mm]\left( \bruch{48}{x} \right)[/mm] = [mm]\left( \bruch{100}{150} \right)[/mm]
> => [mm]\left( \bruch{48 * 150}{100} \right)[/mm]


Hier gehst Du davon aus, daß für 48 Patienten
100 Minuten zur Verfügung stehen.

Das Produkt  aus der Anzahl der Patienten
und dem Zeitaufwand pro  Patient ist jedoch konstant.


> Das ist mein Ansatz, da es in meinen Augen proportional
> ist, in der Schule haben wir allerdings den Ansatz als
> antiproportional betrachtet, darin liegt auch der Grund der
> unterschiedlichen Ergebnisse.
>  
> Habe ich einen Denkfehler gemacht, oder ist dem Lehrer dort
> ein Fehler unterlaufen?


Da hast Du einen Denkfehler gemacht.


>  
> Ich danke im voraus!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]