www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - zulässige / optimale Lösung
zulässige / optimale Lösung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zulässige / optimale Lösung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:22 Mi 25.04.2012
Autor: m51va

Aufgabe
Gegeben sei das LOP
[mm] \begin{array}{rcrcrcrcr} 2x_1 & + & x_2 & - & x_3 & + & 4x_4 & = & 1 \\ 4x_1 & + & 2x_2 & + & x_3 & - & x_4 & = & 5 \\ \multicolumn{7}{r}{\ve{x}} & \geq & 0 \\ \multicolumn{7}{r}{-x_1+t\cdot x_2 + x_4} & \rightarrow & \max \end{array} [/mm]
(a) Ist durch [mm] (0,2,1,0)^T [/mm] eine zulässige Basislösung gegeben? Begründen Sie Ihre Antwort
(b) Für welche Werte t ist durch [mm] (0,2,1,0)^T [/mm] eine optimale Lösung dieses LOP gegeben?

(a) ist kein Problem
(b) Ich wollte das ganze mit der Simplexmethode lösen. Es gibt da diesen Satz, dass der vektor x eine optimale Lösung des LOP's ist, wenn in der Simplextabelle
[mm] \begin{array}{c|c|c} & & NB \\ \hline & w & -g^T \\ \hline B & s & R \end{array} [/mm]
die [mm] g_l [/mm] alle positiv sind. Als Basisvariablen sind hier [mm] x_2 [/mm] und [mm] x_3 [/mm] zu wählen. [mm] (x_1 [/mm] und [mm] x_4 [/mm] sind null und daher die nichtbasisvariablen)
In der Zielfunktion habe ich zunächst [mm] x_2 [/mm] mit hilfe der ersten beiden Gleichungen aus dem LOP eliminiert (erste Gleichung nach [mm] x_2, [/mm] zweite gleichung nach [mm] x_3 [/mm] umstellen, [mm] x_3 [/mm] dann in Gleichung für [mm] x_2 [/mm] einsetzen)
ich denke ich habe mich dabei nicht verrechnet. die neue Zielfunktion lautet dann [mm] -x_1(1+2t)+x_4(1-t)+2t \rightarrow \max [/mm]

Damit erhalte ich die Simplextabelle
[mm] \begin{array}{r|c|cc} & & x_1 & x_4 \\ \hline & 2t & 1+2t & t-1 \\ \hline x_2 & 1 & 2 & 4 \\ x_3 & 5 & 4 & -1 \end{array} [/mm]

und nun geht das dilemma los. Wenn ich jetzt so t wähle, dass die [mm] g_l [/mm] alle positiv sind (also t [mm] \geq [/mm] 1), dann ist nach unserem Satz der Vektor [mm] (0,1,5,0)^T [/mm] eine optimale lösung und nicht [mm] (0,2,1,0)^T. [/mm]

Also ist mein Ansatz falsch oder kann man das auch noch anders zeigen???
ich bedanke mich schon mal

gruß m51va

        
Bezug
zulässige / optimale Lösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 26.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]