www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - zeitunabhängige st. Prozesse
zeitunabhängige st. Prozesse < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeitunabhängige st. Prozesse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:29 Do 05.06.2008
Autor: gabi71

Können stochastische Prozesse zeitunabhängig sein?

Es geht um die Beschreibung einer Größe a durch eine Variable  b. Anhand von Stichproben lässt sich mit einer linearen Regression der Zusammenhang
a=f(b) herstellen. Die Streuung (Varianz) der Stichbroben um diese Funktion (die sich als Erwartungswertfunktion interpretieren lässt) steigt mit zunehmendem b. Gleichzeitig nimmt die Rechtschiefe der Stichprobenverteilung um die Erwartungswertfunktion zu. Wie lässt sich das Ganze am besten beschreiben? Ich hatte an einen stochastischen Prozess gedacht, der nicht wie sonst abhängig von der Zeit sondern von b ist, da ich eine Erwartungswertfunktion habe und sicherlich auch eine Varianzfunktion bestimmen könnte. Vorteil wäre dann auch,dass sich unsicherheiten darstellen lassen könnten; außerdem wären Simulationen möglich.

Haltet ihr dies für sinnvoll? Welchen Prozess könnte man wählen?


Ich danke Euch für die Hilfe!!





Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://statistikforum.foren-city.de/topic,2493,-koennen-stochastische-prozesse-zeitunabhaengig-sein.html

        
Bezug
zeitunabhängige st. Prozesse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 07.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]