www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - zeit homogene SDG L-stetig ...
zeit homogene SDG L-stetig ... < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeit homogene SDG L-stetig ...: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:17 Mi 03.10.2012
Autor: vivo

Hallo liebe Leute,

gegeben sei eine eindimensionale SDG mit zeithomogenem Driftterm [mm]b(\cdot): ]0,\infty[ \to \IR_+[/mm] und Diffusionsterm [mm]\sigma(\cdot): \IR \to \IR[/mm]

[mm]dX_t=b(X_t)dt+\sigma(X_t)dB_t[/mm]

und es gilt, dass [mm]b(\cdot)[/mm] auf [mm]\IR_+[/mm] und [mm]\sigma(\cdot)[/mm] sowohl die übliche Lipschitz Bedingung als auch die üblich lineare Wachstumsbedingung erfüllen.

Wäre [mm]b(\cdot)[/mm] nun eine Funktion die auf ganz [mm]\IR[/mm] definert wäre, so würde (nach Existenz und Eindeutigkeits Sätzen) ja eine starke eindeutige Lösung existieren.

Nun ist meine Funktion [mm]b(\cdot)[/mm] aber nur auf [mm]\IR_+[/mm] definiert. Dies in meinem Fall, weil darin ein exponent kleiner 1 vorkommt.

Nun die Frage:

Gibt es trotzdem sicher eine starke (eindeutige) Lösung?

Natrülich sind die betrachteten Startwerte größer 0.

Bei dem Iterationsverfahren, welches die Beweise verwenden, könnte es doch sein, dass  "stark" negative Werte in der Veränderung der BB dazu führen, dass keine Positivität mehr gegeben ist, oder? Dies wäre ein Problem, da der Dirftterm nur auf [mm]\IR_+[/mm] definiert ist.

Falls es hilft, der Diffusionsterm ist recht einfacher Gestalt, nämlich

[mm]\sigma(x)=c x[/mm] mit [mm]c[/mm] einer Konstante größer 0.

Vielen Dank für eure Hilfe

        
Bezug
zeit homogene SDG L-stetig ...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Fr 05.10.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]