www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - zeigen sie Limes....
zeigen sie Limes.... < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeigen sie Limes....: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 So 03.06.2007
Autor: macio

Aufgabe
Sei [mm] {y_n} [/mm] = [mm] \bruch{1}{\wurzel{5}}( \lambda_{1}^n [/mm] - [mm] \lambda_{2}^n [/mm] )   mit  [mm] \lambda_{1} [/mm] = [mm] \bruch{1}{2}( [/mm] 1+ [mm] \wurzel{5}) [/mm]
                           [mm] \lambda_{2} [/mm] =  [mm] \bruch{1}{2}( [/mm] 1- [mm] \wurzel{5}) [/mm]

Zeigen Sie: [mm] \limes_{n\rightarrow\infty} \bruch{y_n_+_1}{y_n} [/mm] = [mm] \lambda_{1} [/mm]

Hallo ! Ich komme bei dieser Aufgabe nicht mehr weiter..
So weit gehts noch:

[mm] \bruch{y_n_+_1}{y_n} [/mm] = [mm] \bruch{\bruch{1}{\wurzel{5}}( \lambda_{1}^n^+^1 - \lambda_{2}^n^+^1 )}{\bruch{1}{\wurzel{5}}( \lambda_{1}^n - \lambda_{2}^n )} [/mm]

Und dann weis ich leider nicht mehr weiter. Kann mir da einer vll. helfen?? Ich wäre für jede Antwort Dankbar!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
zeigen sie Limes....: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 So 03.06.2007
Autor: Gonozal_IX


> [mm]\bruch{y_n_+_1}{y_n}[/mm] = [mm]\bruch{\bruch{1}{\wurzel{5}}( \lambda_{1}^n^+^1 - \lambda_{2}^n^+^1 )}{\bruch{1}{\wurzel{5}}( \lambda_{1}^n - \lambda_{2}^n )}[/mm]


Machen wir doch mal weiter:

[mm] = \bruch{( \lambda_{1}^n^+^1 - \lambda_{2}^n^+^1 )}{( \lambda_{1}^n - \lambda_{2}^n )}[/mm]

So, nun Klammern wir [mm] \lambda_1^n [/mm]  oben und unten aus, dann steht da:

[mm] = \bruch{\lambda_1^n*(\bruch{\lambda_1^{n+1}}{\lambda_1^n} - \bruch{\lambda_2^{n+1}}{\lambda_1^n})}{\lambda_1^n(1 - \bruch{\lambda_2^n}{\lambda_1^n})}[/mm]

[mm] = \bruch{\lambda_1 - \bruch{\lambda_2^n}{\lambda_1^n}*\lambda_2}{1-(\bruch{\lambda_2}{\lambda_1})^n}[/mm]

[mm] = \bruch{\lambda_1 - (\bruch{\lambda_2}{\lambda_1})^n*\lambda_2}{1-(\bruch{\lambda_2}{\lambda_1})^n}[/mm]


So, und nun überlege:

Was weisst du über [mm] \bruch{\lambda_2}{\lambda_1} [/mm] und damit über [mm] (\bruch{\lambda_2}{\lambda_1})^n [/mm] für [mm]n \to \infty[/mm].

MfG,
Gono.





Bezug
                
Bezug
zeigen sie Limes....: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 03.06.2007
Autor: macio

[mm] \bruch{\lambda_2}{\lambda_1} [/mm] < 1

Bezug
                        
Bezug
zeigen sie Limes....: und weiter?
Status: (Antwort) fertig Status 
Datum: 22:13 So 03.06.2007
Autor: Loddar

Hallo macio!


> [mm]\bruch{\lambda_2}{\lambda_1}[/mm] < 1

[ok] Genau! Was bedeutet das also für [mm] $\limes_{n\rightarrow\infty}\left(\bruch{\lambda_2}{\lambda_1}\right)^n$ [/mm] bzw. den gesamten Ausdruck [mm] $\limes_{n\rightarrow\infty}\bruch{\lambda_1 - \left(\bruch{\lambda_2}{\lambda_1}\right)^n\cdot{}\lambda_2}{1-\left(\bruch{\lambda_2}{\lambda_1}\right)^n}$ [/mm] ?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]