www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - y'=exp(x*y)
y'=exp(x*y) < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

y'=exp(x*y): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:32 Di 12.11.2013
Autor: elmanuel

Aufgabe
y'=exp(x*y)
[mm] y(x_0)=y_0 [/mm]

auf abgeschlossenem Intervall um [mm] x_0 [/mm]

Ist dies eindeutig lösbar?

Können Sie exakte Lösung angeben.

Hallo liebe Gemeinde!

Also ich habe mal raus das es eindeutig lösbar sein muss nach Picard Lindelöf weil das AWP Lipschitz-stetig bezüglich y ist weil die ableitung von exp(x*y) bzgl y ist x*exp(x*y) und das ist auf einem abgeschlossenem intervall beschränkt.

Nun fällt es mir aber schwer eine (die eine) explizite Lösung anzugeben.

Habe schon mich nun mit ein paar Methoden versucht

aber: Methode der getrennten Variablen, Substitution und andere Verfahren waren ungeeignet und lieferten mir kein ergebnis...

welcher Ansatz wäre da empfehlenswert?



        
Bezug
y'=exp(x*y): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 15.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]