www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - y''+5y'=x+e^(-5x)
y''+5y'=x+e^(-5x) < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

y''+5y'=x+e^(-5x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Sa 20.10.2007
Autor: vivo

Hallo,

[mm] y''+5y'=x+e^{-5x} [/mm]

Lösungen der homogenen: [mm] e^{0x} [/mm] = 1  und [mm] e^{-5x} [/mm]

Spezielle Lösung der inhomogenen [mm] y''+5y'=e^{-5x} [/mm] ist [mm] \bruch{1}{-5} xe^{-5x} [/mm]

soweit ok,

jetzt bräuchte ich noch eine Lösung der inhomogenen der Form y''+5y'= x

und dann könnte ich alle Lösungen zur allgemeinen Lösung addieren,

aber ich weiß nicht wie ich die spezielle Lösung von y''+5y'= x berechnen kann es gelingt mir weder durch den Differentialoperator noch durch den Ansatz [mm] Cxe^{0x} [/mm]

vielen Dank für eure Hilfe!

        
Bezug
y''+5y'=x+e^(-5x): Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 20.10.2007
Autor: rainerS

Hallo vivo,

> [mm]y''+5y'=x+e^{-5x}[/mm]
>  
> Lösungen der homogenen: [mm]e^{0x}[/mm] = 1  und [mm]e^{-5x}[/mm]
>  
> Spezielle Lösung der inhomogenen [mm]y''+5y'=e^{-5x}[/mm] ist [mm]\bruch{1}{-5} xe^{-5x}[/mm]
>  
> soweit ok,
>  
> jetzt bräuchte ich noch eine Lösung der inhomogenen der Form y''+5y'= x
>
> und dann könnte ich alle Lösungen zur allgemeinen Lösung addieren,
>  
> aber ich weiß nicht wie ich die spezielle Lösung von
> y''+5y'= x berechnen kann es gelingt mir weder durch den
> Differentialoperator noch durch den Ansatz [mm]Cxe^{0x}[/mm]

Ich würde die DGL einmal integrieren:

[mm]y'+5y = \bruch{1}{2}x^2 - \bruch{1}{5}\mathrm{e}^{-5x}[/mm] + C

Die spezielle Lösung für den zweiten Term der Inhomogenität hast du ja schon bestimmt. Für den ersten kannst du entweder die Methode der Variation der Konstanten verwenden, also [mm]y=K(x)e^{-5x}[/mm] ansetzen und [mm]K(x)[/mm] bestimmen, oder aber einen Ansatz mit einem Polynom [mm]y=ax^2+bx+c[/mm] machen.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]