www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - würfel
würfel < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

würfel: wahrscheinlichkeiten..
Status: (Frage) beantwortet Status 
Datum: 22:17 Sa 19.11.2005
Autor: satanicskater

so haillo leutz,
ein würfel wird dreimal geworfen. Bestimmen Sie die Wahrscheinlichkeit des folgenden Ereignisses.
1. Augensumme größer als 4
2. augensumme kleiner als 16
3. augenzahl 2 tritt höchstens zweimal auf
4. augenzahl 4 tritt mindestens einmal auf

1: es gibt ja 216 verschidene kombinationsmöglichkeiten..
    und nur die kombination (1,1,1) is kleiner als 4.
   die antort lautet: 215/216
2: hm da wirds schon schwer. wie kann ich das ausrechnen oder muss ich        
    so wie bei 1 alle nachzählen??
3: die aufgabe is doch im prinzip wie aufgabe 1.. dh alle kombis sind  
    möglich bis auf (2,2,2)
4:da hab ich leider auch kp, soryy

und? könnt ihr mir helfen??

        
Bezug
würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Sa 19.11.2005
Autor: Cool-Y

hi skater,
zu 1): richtig.

zu 2): ja, du musst alle nachzählen(mir fällt jedenfalls spontan keine andere möglichkeit ein). ich betrachte das gegenereigniss:
für den ersten wurf kommen 4,5 und 6 in frage.
Bei 4 gibt es nur eine möglichkeit, nämlich (4,6,6).
Bei 5 gibt es drei möglichkeiten, nämlich (5,6,6), (5,6,5) und (5,5,6).
Bei 6 gibt es sechs möglichkeiten, nämlich (6,6,6), (6,6,5), (6,6,4), (6,5,6), (6,5,5) und (6,4,6).
Insgesamt also 10 Möglichkeiten für das gegenereignis. Daraus folt [mm] P=\bruch{103}{108}. [/mm]

zu 3): richtig.

zu 4): Die Anzahl der Möglichkeiten, dass die 4 gar nicht vorkommt, ist [mm] 5^{3}=125. [/mm] Also ist [mm] P=\bruch{216-125}{216}=\bruch{91}{216}. [/mm]

falls noch unklarheiten auftreten, einfach noch mal nachfragen. ;-)

Bezug
        
Bezug
würfel: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:35 So 09.04.2006
Autor: ErnieHH

Ich komme bei Aufgabe 1 auf eine andere Lösung!

Und zwar wird nach denjenigen Ereignissen gefragt, deren Augensumme GRÖSSER als 4 ist. Daher sind auch alle Lösungen, die genau 4 ergeben auszuschließen.
Die Augensumme 4 ergibt sich bei diesen drei Ereignissen: (1,1,2), (1,2,1) und (2,1,1).
Eine Augensumme von kleiner als 4 ergibt sich (wie bereits richtig dargestellt) nur bei (1,1,1).
Es sind also genau vier Fälle auszuschließen.

Somit lautet meine Lösung:
p(>4) = (216-4)/216 = 212/216 = 53/54

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]