wkeitsmaß < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:22 Fr 17.10.2008 | Autor: | AriR |
hey leute
wenn man bei der definition des wkeitsmaßes die sig.additvität nicht fordern würde, was hätte das für auswirkungen? wenn man nur die normirtheit verlangt sollte das doch auch ausreichen oder?
wenn man wkeitsräume über p herleitet, welche nur aussagen über die elementarereignisse, macht fordert man doch auch nur, dass p normiert ist, würde das P nicht auch ausreichen?
danke schonmal im voraus :) gruß
|
|
|
|
Hallo,
du brauchst die sigma-Additivität schon, denn man kann nicht aus der Normiertheit und der Positivität von W-Maßen auf die sigma-Additivität schließen. Zum anderen bildet die sigma-Additivität doch die Intuition ab, dass sich die Wahrscheinlichkeiten für disjunkte Ereignisse addieren, d.h. wenn du das nicht zulässt, wäre ein Experiment möglich für das bei einem fairen Würfelwurf das Ereignis {1,2,3} die Wahrscheinlichkeit 2/6 hätte und nicht 3/6, d.h. unsere Intuition wäre völlig hinüber (und denke erst an den fall, dass du allgemeine Maße betrachtest, wie z.B. das Lebesque-Maß, dann wäre auch unsere räumliche Intuition hinüber).
Vielleicht verstehe ich deine Frage aber auch nicht ganz.
Grüße, Steffen
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 15:49 Fr 17.10.2008 | Autor: | AriR |
ich glaub du hast das wohl verstanden. danke schonmal :)
kannst du vllt noch eben den wkeitsraum mit den zugehörige wkeiten nennen, bei dem das würfelspiel diese "komischen" wkeiten hätte, falls man die sig.additivtät außen vor lässt?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Sa 25.10.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:24 Mo 20.10.2008 | Autor: | AriR |
falls die sig.additivität nicht gefordert ist, dann heißt das doch eigentlich, dass ich die wkeiten der ereignissmenge frei wählen kann abgesehen von [mm] \Omega [/mm] das immer die wkeit 1 haben muss wegen der normiertheit oder?
also wenn wir nochmal das würfelspiel mittels eines fairen würfels, dann haben die elementarereignisse alle die wkeit [mm] \bruch1{6}, [/mm] die menge [mm] \{1,2,3,4,5,6\} [/mm] die wkeit 1 und die wkeit aller anderen teilmenge von [mm] \Omega [/mm] wie zB [mm] \{1,4\} [/mm] oder [mm] \{2,5,6\} [/mm] kann ich frei wählen zwischen 0 und 1 frei ohne gegen irgend etwas zu verstoßen FALLS die sig additivität nicht gefordert ist oder?
gruß :)
|
|
|
|
|
Hallo Ari,
habe erst jetzt wieder reingeschaut.
> falls die sig.additivität nicht gefordert ist, dann heißt
> das doch eigentlich, dass ich die wkeiten der
> ereignissmenge frei wählen kann abgesehen von [mm]\Omega[/mm] das
> immer die wkeit 1 haben muss wegen der normiertheit oder?
>
> also wenn wir nochmal das würfelspiel mittels eines fairen
> würfels, dann haben die elementarereignisse alle die wkeit
> [mm]\bruch1{6},[/mm] die menge [mm]\{1,2,3,4,5,6\}[/mm] die wkeit 1 und die
> wkeit aller anderen teilmenge von [mm]\Omega[/mm] wie zB [mm]\{1,4\}[/mm]
> oder [mm]\{2,5,6\}[/mm] kann ich frei wählen zwischen 0 und 1 frei
> ohne gegen irgend etwas zu verstoßen FALLS die sig
> additivität nicht gefordert ist oder?
>
genau so könnte man es machen.
Gruß, Steffen
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:18 Mo 20.10.2008 | Autor: | AriR |
alles klar danke für die hilfe ;)
|
|
|
|