windschiefe geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Frage) beantwortet    |    | Datum: |  16:17 Do 08.04.2010 |    | Autor: |  isabel-f |   
	   
	   hallo. meine frage ist zu den windschiefen geraden, da ich nicht genau weiß, wie ich die aufgabe genau lösen kann.
 
die formel lautet ja : d= (p-q)*n(0)
 
 
n(0) ist der Einheitsnormalenvektor und p und q die Richtungsvektoren der beiden Geraden.
 
Die zwei windschiefen Geraden lauten: g:x=(3/1/3)+r*(1/-2/-1)
 
                                                              h:x=(2/1/0)+s*(3/-2/2)
 
 
mein ansatz: n=(-6/-5/4)          n(0)= (-6/-5/4)* (1 geteilt durch [mm] \wurzel{77} [/mm] )
 
 
also : ((1/-2/-1)-(3/-2/2)) * (-6/-5/4)* (1 geteilt durch [mm] \wurzel{77} [/mm] )
 
 
danach:
 
(-2/0/-3) *  (-6/-5/4)* (1 geteilt durch [mm] \wurzel{77} [/mm] )
 
doch wie mach ich dann weiter? muss ich dann das skalatprodukt anwenden, also 
 
(-2*-6)+(0*-5)+(-3*4) und dann alles noch * (1 geteilt durch [mm] \wurzel{77} [/mm] )
 
 
das kann ja eigentlich nciht stimmen, weil das skalarprodukt null ergibt...
 
wie rechnet man das dann?
 
danke für eure hilfe!!!
 
 
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Antwort) fertig    |    | Datum: |  16:38 Do 08.04.2010 |    | Autor: |  weduwe |   
	   
	   [mm] \vec{p}=(3,1,3)^T [/mm] und [mm] \vec{q}=(2,1,0)^T
 [/mm] 
 
      | 
     
    
   | 
  
 
 |   
|                  | 
  
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Frage) beantwortet    |    | Datum: |  16:48 Do 08.04.2010 |    | Autor: |  isabel-f |   
	   
	   das heißt also p und q sind die punkte auf den geraden anstatt den richtungsvektoren? oh dann hab ich mich da vertan.
 
aber stimmt der rest, also mit dem skalarprodukt ??
 
das richtige ergebnis wäre dann -6 geteilt durch [mm] \wurzel{77}???
 [/mm] 
 
      | 
     
    
   | 
  
 
 |   
|                          | 
   
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Mitteilung) Reaktion unnötig    |    | Datum: |  16:35 Fr 09.04.2010 |    | Autor: |  isabel-f |   
	   
	   kann mir meine frage niemand beantworten? 
 
ich wäre echt dankbar. ich will ja nur wissen, ob der rechenweg so stimmt...
 
 
      | 
     
    
   | 
  
 
 |   
|                          | 
   
 
   | 
  
 
  
   
    
     
	  
	   Hallo isabel-f,
 
 
> das heißt also p und q sind die punkte auf den geraden 
 
> anstatt den richtungsvektoren? oh dann hab ich mich da 
 
 
 
Richtig.
 
 
 
> vertan.
 
>  aber stimmt der rest, also mit dem skalarprodukt ??
 
 
 
Der Normalenvektor und dessen Betrag stimmen. 
 
 
 
>  das richtige ergebnis wäre dann -6 geteilt durch 
 
> [mm]\wurzel{77}???[/mm]  
 
 
 
Genau.  
 
 
 
Gruss
 
MathePower
 
 
      | 
     
    
   | 
  
 
 |   
  
   |