www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - wachstumsfunktion
wachstumsfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wachstumsfunktion: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 09.01.2006
Autor: eva2203

Aufgabe
die höhe in metern einer bestimmten baumart bezüglich ihres alters lässt sich näherungsweise mit der funktion h(t)=6/(1+9x2^(-1/2t)) beschreiben, wobei t das alter in jahren angibt.
a) h(t) ist eine streng monoton steigende funktion, sie besitzt keine extremstellen und nur eine wendestelle  bei t~6,3. wie hoch kann der baum maximal werden?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, wir haben als Hausaufgabe auf diese Aufgabe auszurechnen, jedoch sind wir noch nicht mit dem Kapitel Wachstumsfunktion angefangen. Könntet ihr mir vielleicht helfen die Lösung zu finden ? Danke

        
Bezug
wachstumsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 09.01.2006
Autor: Christian

Hallo.

> die höhe in metern einer bestimmten baumart bezüglich ihres
> alters lässt sich näherungsweise mit der funktion
> h(t)=6/(1+9x2^(-1/2t)) beschreiben, wobei t das alter in
> jahren angibt.
>  a) h(t) ist eine streng monoton steigende funktion, sie
> besitzt keine extremstellen und nur eine wendestelle  bei
> t~6,3. wie hoch kann der baum maximal werden?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo, wir haben als Hausaufgabe auf diese Aufgabe
> auszurechnen, jedoch sind wir noch nicht mit dem Kapitel
> Wachstumsfunktion angefangen. Könntet ihr mir vielleicht
> helfen die Lösung zu finden ? Danke

Naja, konkrete Ansätze bzw. Probleme und Fragen wären hier schon erwünscht.
Monotonie läßt sich über das Vorzeichen der 1. Ableitung zeigen,  Wendestellen sind bekanntlich Nullstellen der 2. Ableitung.
Da die Funktion monoton wachsend ist, ist  ist bei der Frage nach der maximalen Höhe zu untersuchen, was für [mm] $t\to\infty$ [/mm] passiert.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]