www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - vom Integranden zum Integral
vom Integranden zum Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vom Integranden zum Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Sa 17.01.2015
Autor: Alex1993

Hallo,
ich habe eine kurze Verständnisfrage und hoffe ihr auch Hilfe.
Ich weiß, dass [mm] |X_{k}| \le [/mm] 1.  In der Vorlesung wurde nun daraus geschlussfolgert, dass [mm] \integral_{a}^{b}{X_{k} dx} \le [/mm] 1
wie kann man dies begründen?
Danke

        
Bezug
vom Integranden zum Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Sa 17.01.2015
Autor: Al-Chwarizmi


>  Ich weiß, dass [mm]|X_{k}| \le[/mm] 1.  In der Vorlesung wurde nun
> daraus geschlussfolgert, dass [mm]\integral_{a}^{b}{X_{k} dx} \le[/mm]  1
>  wie kann man dies begründen?


Hallo Alex

Das kann man nicht begründen, denn es ist falsch.
Ich vermute, dass du etwas missverstanden oder
eine zusätzliche Voraussetzung (z.B. über die Werte
von a und b) vergessen hast.

LG  ,   Al-Chw.




Bezug
        
Bezug
vom Integranden zum Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Sa 17.01.2015
Autor: DieAcht

Hallo Alex1993!


Du hast dich bestimmt vertippt. Es ist

      [mm] $f(x)\le [/mm] g(x)$ für alle [mm] $x\in[a,b]\quad\Longrightarrow\quad \int_{a}^{b}f(x)dx\le\int_a^b [/mm] g(x)dx$.


Gruß
DieAcht


Bezug
                
Bezug
vom Integranden zum Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Sa 17.01.2015
Autor: Alex1993

Hey,
ich habe wahrscheinlich vergessen den Zusammenhang zu erwähnen. Es gebt um stochastische Erwartungswerte. Wir haben aus [mm] |Y_{k}| \le [/mm] 1 geschlussfolgert, dass auch [mm] E(|Y_{k}| \le [/mm] 1 und damit [mm] \integral_{}^{}{Y_{k}^2 dP} \le [/mm] 1
Kann man durch einen beschränkten Betrag immer die quadratische Integrierbarkeit schlussfolgern?

LG

Bezug
                        
Bezug
vom Integranden zum Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Sa 17.01.2015
Autor: DieAcht


> Wir haben aus [mm]|Y_{k}| \le 1 [/mm] geschlussfolgert, dass auch [mm]E(|Y_{k}|\red{)} \le 1[/mm]

Aus [mm] $X\le [/mm] Y$ fast sicher mit existierenden(!) Erwartungswerten
[mm] $E(X)\$ [/mm] und [mm] $E(Y)\$ [/mm] folgt

      [mm] $E(X)\le [/mm] E(Y)$.

Außerdem ist

      [mm] $E(c)=c\$ [/mm] für alle [mm] c\in\IR. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]