www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollständige induktion
vollständige induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Mo 01.09.2008
Autor: isabell_88

Aufgabe
beweisen Sie den folgenden satz durch vollständige induktion:

seien [mm] a_{1} [/mm] das anfangsglied und q der (konstante) quotient einer geometrischen folge. Dann gilt für das n-te glied [mm] a_{n}: [/mm]
[mm] a_{n}=a_{1}*q^{n-1} [/mm]

I. Induktionsanfang: A(1) d.h. [mm] a_{1}=a_{1}*q^{1-1} =a_{1}*1= a_{1} [/mm]

Bedingung 1 ist somit erfüllt.

II: Ind.voraussetzung: A(k) d.h. [mm] a_{k}=a_{1}*q^{k-1} [/mm]
zu zeigen: A(k+1) d.h. [mm] a_{k+1}=a_{1}*q^{(k+1)-1} [/mm]

Nachweis:
Nach Definition der geometrischen Folge gilt:
[mm] a_{n+1}:a_{n}=q [/mm]
[mm] a_{n+1} =q*a_{n} [/mm]       k für n einsetzen
[mm] a_{k+1} =q*a_{k} [/mm]

nach einsetzen der Ind.voraussetzung:
[mm] a_{k+1} =q*\underbrace{(a_{1}*q^{k-1})}_{=a_{k} } [/mm]


ab hier weiß ich jetzt leider nicht mehr weiter.....wie komme ich denn von hier aus auf:
"zu zeigen: A(k+1) d.h. [mm] a_{k+1}=a_{1}*q^{(k+1)-1} [/mm] " oder hab ich schon zu beginn von Schritt II einen fehler gemacht?
kann mir bitte jemand helfen?

        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 01.09.2008
Autor: schachuzipus

Hallo Isabell,

> beweisen Sie den folgenden satz durch vollständige
> induktion:
>  
> seien [mm]a_{1}[/mm] das anfangsglied und q der (konstante) quotient
> einer geometrischen folge. Dann gilt für das n-te glied
> [mm]a_{n}:[/mm]
>   [mm]a_{n}=a_{1}*q^{n-1}[/mm]
>  I. Induktionsanfang: A(1) d.h. [mm]a_{1}=a_{1}*q^{1-1} =a_{1}*1= a_{1}[/mm]
>  
> Bedingung 1 ist somit erfüllt.
>  
> II: Ind.voraussetzung: A(k) d.h. [mm]a_{k}=a_{1}*q^{k-1}[/mm]
>   zu zeigen: A(k+1) d.h. [mm]a_{k+1}=a_{1}*q^{(k+1)-1}[/mm]
>  
> Nachweis:
> Nach Definition der geometrischen Folge gilt:
>  [mm]a_{n+1}:a_{n}=q[/mm]
>  [mm]a_{n+1} =q*a_{n}[/mm]       k für n einsetzen
>  [mm]a_{k+1} =q*a_{k}[/mm]
>
> nach einsetzen der Ind.voraussetzung:
>  [mm]a_{k+1} =q*\underbrace{(a_{1}*q^{k-1})}_{=a_{k} }[/mm]
>  
>
> ab hier weiß ich jetzt leider nicht mehr weiter.....wie
> komme ich denn von hier aus auf:
>   "zu zeigen: A(k+1) d.h. [mm]a_{k+1}=a_{1}*q^{(k+1)-1}[/mm] "

Das steht doch da (4 Zeilen höher), reibe dir mal kräftig die Augen ;-)

Du warst bis hierhin gekommen:

[mm] $a_{k+1}=q\cdot{}\left(a_1\cdot{}q^{k-1}\right)$ [/mm]

Multipliziere das q mal in die Klammer rein ...


> oder hab ich schon zu beginn von Schritt II einen fehler
> gemacht?

Nein, das ist ein super Beweis!

>  kann mir bitte jemand helfen?


LG

schachuzipus

Bezug
                
Bezug
vollständige induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Mo 01.09.2008
Autor: isabell_88

ach so, das wars schon?
danke für den hinweis



Bezug
                        
Bezug
vollständige induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 01.09.2008
Autor: schachuzipus

Hallo nochmal,

hmm, du musst es halt nur noch aufschreiben, damit der Beweis "rund" wird:

[mm] $a_{k+1}=...=q\cdot{}\left(a_1\cdot{}q^{k-1}\right)=a_1\cdot{}\left(q^{\red{1}}\cdot{}q^{\blue{k-1}}\right)=a_1\cdot{}q^{\blue{k-1}\red{+1}}=a_1\cdot{}q^{(k+1)-1}$ [/mm]

So in etwa, du warst also echt fast fertig ;-)

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]