www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - vollständige induktion
vollständige induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Fr 28.10.2005
Autor: kuminitu

Hallo,
habe große Probleme mit den folgenden 2 Aufgaben:

1:
Auf der Menge der ganzen Zahlen Z sei eine Relation R
wie folgt gegeben.Für m,n  [mm] \varepsilon [/mm] Z gilt mRn, falls m−n gerade ist.
Zeigen Sie,dass R eine Aquivalenzrelation ist. Bestimmen Sie außerdem
die Restklassen(oder Aquivalenzklassen)[0]und[1].

2. Auf der Menge N bestehe die Relation mRn,falls
[mm] m^{2} [/mm] +  [mm] n^{2} [/mm] =  [mm] k^{2} [/mm] für ein k [mm] \varepsilon [/mm] N.
Definiert R eine Aquivalenzrelation??

Bitte helft mir, ich habe große Probleme mit Relationen und brauche unbedingt ein Anwendungsbeispiel um reinzukommen!
Vielen Dank im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Fr 28.10.2005
Autor: Stefan

Hallo!


> 1:
>  Auf der Menge der ganzen Zahlen Z sei eine Relation R
>  wie folgt gegeben.Für m,n  [mm]\varepsilon[/mm] Z gilt mRn, falls
> m−n gerade ist.
>  Zeigen Sie,dass R eine Aquivalenzrelation ist.

Hier muss du die Eigenschaften einer MBÄquivalenzrelation nachweisen, also Reflexivität, Symmetrie und Transitivität. Versuche es bitte mal!

> Bestimmen
> Sie außerdem
>  die Restklassen(oder Aquivalenzklassen)[0]und[1].

Es gilt:

$[0] = [mm] \{x \in \IZ \, : \, xR0\} [/mm] = [mm] \{x \in \IZ\, : \, x-0 \ \mbox{ist gerade}\} [/mm] = [mm] \{x \in \IZ\, : \, x \ \mbox{ist gerade}\} [/mm] = [mm] 2\IZ$. [/mm]

Schaffst du es in ähnlicher Manier $[1]$ "auszurechnen"?

> 2. Auf der Menge N bestehe die Relation mRn,falls
>   [mm]m^{2}[/mm] +  [mm]n^{2}[/mm] =  [mm]k^{2}[/mm] für ein k [mm]\varepsilon[/mm] N.
>  Definiert R eine Aquivalenzrelation??

Ist $R$ reflexiv? Gibt es also für alle $m [mm] \in \IN$ [/mm] ein $k [mm] \in \IN$ [/mm]  mit

[mm] $m^2+m^2 [/mm] = [mm] 2m^2 [/mm] = [mm] k^2$? [/mm]

Liebe Grüße
Stefan  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]