vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:02 Di 15.12.2009 | Autor: | Schobbi |
Aufgabe | Beweisen Sie per Induktion, dass eine Menge mit [mm] n\ge2 [/mm] Elementen genau [mm] \vektor{n \\ 2} [/mm] Teilmengen mit genau zwei Elementen hat. |
Hallo zusammen, eigentlich fehlt mir nur die letzte Schlussfolgerung um die obige Aussage zu beweisen. Vielleicht könnt ihr mir dabei helfen.
Hier meine Überlegungen:
Induktionsstart: klar, da [mm] \vektor{2 \\ 2} [/mm] = 1 ...
[mm] Induktionsschritt:\vektor{n+1 \\ 2}=\vektor{n \\ 2-1}+\vektor{n \\ 2}=\vektor{n \\ 1}+\vektor{n \\ 2}
[/mm]
Jetzt kann ich meine Induktionsvoraussetzung anweden und muss also nur noch zeigen bzw. begründen, dass wenn ich ein Element mehr in der Ausgangsmenge habe [mm] \vektor{n \\ 1}= [/mm] n zweielementige Teilmengen mehr habe, aber warum ist das der Fall?
Danke!!
|
|
|
|
> Beweisen Sie per Induktion, dass eine Menge mit [mm]n\ge2[/mm]
> Elementen genau [mm]\vektor{n \\ 2}[/mm] Teilmengen mit genau zwei
> Elementen hat.
> Hallo zusammen, eigentlich fehlt mir nur die letzte
> Schlussfolgerung um die obige Aussage zu beweisen.
> Vielleicht könnt ihr mir dabei helfen.
>
> Hier meine Überlegungen:
>
> Induktionsstart: klar, da [mm]\vektor{2 \\ 2}[/mm] = 1 ...
> [mm]Induktionsschritt:\vektor{n+1 \\ 2}=\vektor{n \\ 2-1}+\vektor{n \\ 2}=\vektor{n \\ 1}+\vektor{n \\ 2}[/mm]
>
> Jetzt kann ich meine Induktionsvoraussetzung anweden und
> muss also nur noch zeigen bzw. begründen, dass wenn ich
> ein Element mehr in der Ausgangsmenge habe [mm]\vektor{n \\ 1}=[/mm]
> n zweielementige Teilmengen mehr habe, aber warum ist das
> der Fall?
Hallo Schobbi,
mach dir klar, welches die neuen Teilmengen sind,
die dazu kommen. Wenn eine 2-elementige Teilmenge
neu sein soll, dann muss sie das neu hinzugekommene
Element [mm] e_{n+1} [/mm] enthalten. Dazu kann sich irgend eines
der "alten" Elemente [mm] e_1 [/mm] , [mm] e_2 [/mm] , ... , [mm] e_n [/mm] gesellen.
LG Al-Chw.
|
|
|
|
|
Man nehme ein weiteres Element [mm] x_{n+1} [/mm] zu einer n-elementigen Menge dazu. Das heißt die neue Menge M' = [mm] M\cup x_{n+1}. [/mm] Nach IV hat die Menge M wie du schon gesagt hast [mm] \vektor{n \\ 2} [/mm] mögliche 2 elementige Teilmengen. Jetzt kannst du das Element [mm] x_{n+1} \in{M' \setminus M} [/mm] mit jedem anderen Element [mm] x_{n} [/mm] aus M (n-Stück) zu einer zwei-elementigen Teilmengekombinieren. Also "+ n".
|
|
|
|