www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - vollständige Induktion
vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mo 26.02.2018
Autor: jonas55

Aufgabe
Zeige

[mm] \summe_{k=0}^{n} (-1)^{k+1}*k^2=\frac{(-1)^{n+1}n(n+1)}{2} [/mm]

Hallo,

also IA klar, IV klar aber im IS hänge ich. Und zwar nachdem ich die IV einsetze...

[mm] \summe_{k=0}^{n} (-1)^{k+1}*k^2 [/mm] + [mm] (-1)^{n+2}*(n+1)^2 [/mm]

I.V.= [mm] \frac{(-1)^{n+1}n(n+1)}{2}+(-1)^{n+2}*(n+1)^2 [/mm]

so....
kann mir da jemand helfen?
Vielen Dank!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mo 26.02.2018
Autor: M.Rex

Hallo

Dein schritt bisher hist korrekt, auch wenn er nicht gut notiert ist

[mm] \sum\limits_{k=0}^{n+1}(-1)^{k+1}\cdot k^{2} [/mm]
[mm] =\sum\limits_{k=0}^{n}\left[(-1)^{k+1}\cdot k^{2}\right]+\left((-1)^{n+1+1}\cdot(n+1)^{2}\right) [/mm]
Nun, nach I.V.
[mm] =\frac{(-1)^{n+1}n(n+1)}{2}+((-1)^{n+2}\cdot{}(n+1)^2) [/mm]

Meistens hilt es, das Ziel schon einmal zu notieren, hier in dem Fall ist dieses doch doch

[mm] =\frac{(-1)^{n+2}(n^{2}+3n+2)}{2} [/mm]
[mm] =\frac{(-1)^{n+2}(n+1)(n+2)}{2} [/mm]
[mm] =\frac{(-1)^{\green{(n+1)}+1}\green{(n+1)}(\green{(n+1)}+1)}{2} [/mm]

Bringe also durch Termumformungen den term [mm] \frac{(-1)^{n+1}n(n+1)}{2}+((-1)^{n+2}\cdot{}(n+1)^2) [/mm]
auf
[mm] \frac{(-1)^{n+2}(n^{2}+3n+2)}{2} [/mm]

Marius

Bezug
                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mo 26.02.2018
Autor: jonas55

.....
Bezug
        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 26.02.2018
Autor: Diophant

Hallo,

nutze folgendes:

[mm] (-1)^{n+2}=-(-1)^{n+1} [/mm]

sowie

[mm] n^2+3n+2=n^2+n+2n+2=n*(n+1)+2*(n+1)=(n+1)*(n+2) [/mm]

Bringe alles auf einen gemeinsamen Nenner und nutze diese beiden Hinweise (es ist alles in allem eine sehr einfache Aufgabe).


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]