www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vollständige Induktion
vollständige Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:55 So 20.11.2005
Autor: Doreen

Hallo,

wenn die andere Aufgabe nicht schon das Schlimmste für mich
ist. Ich soll auch vollgende Aufgabe durch vollständ. Induktion
oder Binomial... beweisen. Dabei schaffe ich es ja noch
nicht einmal hierfür den Induktionsanfang hinzubekommen.

Ich weiß zwar, das diese Summe unmittelbar aus dem Beweis
der Binomischen-Formel aus geht.... aber das durch vollständ. Induktion
zu beweisen....ein Rätzel...

Aufgabe: [mm] \summe_{k=0}^{n} (-1)^{k} \vektor{n\\k} [/mm] = 0

Kann mir jemand sagen, wie ich den Induktionsanfang davon in
den Griff bekomme. Denn für n=o darf ich nicht einsetzen mit n=1
funktionierts nicht wirklich... da erhalte ich:

[mm] \summe_{k=0}^{1} (-1)^{0} \vektor{1\\0} =(-1)^{0} [/mm] * [mm] \bruch{n!}{(n-k)!*k!} [/mm] = [mm] (-1)^{0} [/mm] * [mm] \bruch{1!}{(1-0)!*0!} [/mm]   ...

und das ergibt nicht NULL oder übersehe ich da was?

Wäre lieb, wenn sich hierbei auch jemand erbarmen würde
und mir hilfreiche Unterstützung trotz des vielen Tippens gibt.

Liebe Grüße und Tausend Dank an den jenigen, der mir das
erklärt...

Doreen

diese Frage habe ich in keinen anderen Forum gestellt.

        
Bezug
vollständige Induktion: Summe aus zwei(!) Summanden
Status: (Antwort) fertig Status 
Datum: 11:31 So 20.11.2005
Autor: Loddar

Guten Morgen Doreen!


Du vergisst hier die Bedeutung des Summenzeichens.

Denn für $k \ =\ 0$ und $k \ = \ 1$ haben wir ja zwei Summanden:

[mm] $\summe_{k=0}^{1} (-1)^k*\vektor{1\\k} [/mm] \ = \ [mm] \underbrace{(-1)^0*\vektor{1\\0}}_{k \ = \ 0} [/mm]  \ + \ [mm] \underbrace{(-1)^1*\vektor{1\\1}}_{k \ = \ 1} [/mm] \ = \ ...$


Und damit sollte auch der gewünschte Wert $0_$ herauskommen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]