www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - vollst. Induktion - Partialbru
vollst. Induktion - Partialbru < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollst. Induktion - Partialbru: vollst.Induktion - Partialbruc
Status: (Frage) beantwortet Status 
Datum: 17:47 Di 06.12.2011
Autor: photonendusche

Aufgabe
(i) Bestimmen Sie mittels Partialbruchzerlegung die rationale Folge in n, die der Summe [mm] \summe_{k=3}^{n} \bruch{1}{k^{2}-3k+2}, n\in\IN, n\ge3 [/mm] entspricht.
(ii) Beweisen Sie Ihr Ergebnis mittels vollständiger Induktion.

Bei (i) kam ich durch lustiges Rumrechnen auf  [mm] \summe_{k=3}^{n} \bruch{1}{k-2}- \bruch{1}{k-1}. [/mm]
Nun habe ich Verständnisprobleme bei (ii).
Ich habe es folgendermaßen weit geschafft:
Induktionsanfang: [mm] \summe_{k=3}^{3} \bruch{1}{k^{2}-3k+2} [/mm] = [mm] \bruch{1}{2} [/mm] = [mm] \summe_{k=3}^{3} \bruch{1}{k-2}-\bruch{1}{k-1} [/mm] = [mm] \bruch{1}{3-2}-\bruch{1}{3-1} [/mm]
Induktionsvoraussetzung: für ein n, n [mm] \in\IN [/mm] gilt: [mm] \summe_{k=3}^{n} \bruch{1}{k^{2}-3k+2}=\summe_{k=3}^{n} \bruch{1}{k-2}-\bruch{1}{k-1} [/mm]
Induktionsbehauptung: es soll gelten [mm] \summe_{k=3}^{n+1} \bruch{1}{k^{2}-3k+2} [/mm] = [mm] \summe_{k=3}^{n+1} \bruch{1}{k-2}-\bruch{1}{k-1} [/mm]

Ich hoffe, dass bis jetzt alles korrekt ist. Jetzt fehlt mir der (er)lösende Anfang für den Induktionsschritt.

        
Bezug
vollst. Induktion - Partialbru: nicht fertig bei (i)
Status: (Antwort) fertig Status 
Datum: 18:03 Di 06.12.2011
Autor: Loddar

Hallo photonendusche!


>  Bei (i) kam ich durch lustiges Rumrechnen auf   [mm]\summe_{k=3}^{n} \bruch{1}{k-2}- \bruch{1}{k-1}.[/mm]

[ok] Aber Du bis noch lange nicht fertig. Du sollst ja eine summenfreie Darstellung finden (Stichwort: Teleskopsumme).

Diesen neuen Term (welcher einen nicht ganz komplizierten Bruch darstellt), sollst Du dann mittels Induktion nachweisen.


Gruß
Loddar


Bezug
                
Bezug
vollst. Induktion - Partialbru: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Di 06.12.2011
Autor: photonendusche

Kannst du mir ein Tipp geben, wie ich das Summenzeichen wegbekomme?


Bezug
                        
Bezug
vollst. Induktion - Partialbru: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Di 06.12.2011
Autor: Valerie20

Hallo!
Schreib dir die Summe doch mal für die ersten fünf Glieder heraus.
Was stellst du fest? Wie wird wohl das Endergebnis der Summe lauten?
Valerie


Bezug
                                
Bezug
vollst. Induktion - Partialbru: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 06.12.2011
Autor: photonendusche


> Hallo!
>  Schreib dir die Summe doch mal für die ersten fünf
> Glieder heraus.
>  Was stellst du fest? Wie wird wohl das Endergebnis der
> Summe lauten?
>  Valerie
>  

1-n?


Bezug
                                        
Bezug
vollst. Induktion - Partialbru: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Di 06.12.2011
Autor: leduart

Nein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]