www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - vertauschung Limes/Different.
vertauschung Limes/Different. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vertauschung Limes/Different.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 27.02.2013
Autor: theresetom

Aufgabe
Prop.:
Es sei [mm] f_n [/mm] : [a,b] -> [mm] \IR [/mm] stetig differenzierbar. Die folge [mm] (f_n) [/mm] sei punktweise konvergent gegen f:[a,b]-> [mm] \IR [/mm] und die Folge der ABleitungen [mm] (f_n [/mm] ') sei gleichmäßig konvergent. Dann ist f differenzierbar und es gilt
[mm] \forall [/mm] x [mm] \in [/mm] [a,b] : f'(x)= [mm] lim_{n->\infty} [/mm] f'_n(x)

Prop.:
Sei [mm] f_n \in [/mm] C([a,b]) [mm] \cap [/mm] D((a,b)) und [mm] f_n [/mm] ' [mm] \in [/mm] C([a,b])
und [mm] f_n [/mm] -> f [mm] (n->\infty) [/mm] gleichmäßig
[mm] f_n' [/mm] -> g [mm] (n->\infty) [/mm] gleichmäßig
Dann ist f [mm] \in [/mm] D([a,b]) und es gilt f' = g

Ich hab zweimal dieselbe Analysisvorlesung genossen bei 2 verschiedenen Lehrern.  Ist die zweite Proposition eine abgeschwächste version von der Proposition 1? Da da plötzlich verlangt wird, dass [mm] (f_n) [/mm] glm konvergent statt nur punktweise konvergent gegen f ist??
Oder irre ich mich?

        
Bezug
vertauschung Limes/Different.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Mi 27.02.2013
Autor: steppenhahn

Hallo,


> Prop.:
>  Es sei [mm]f_n[/mm] : [a,b] -> [mm]\IR[/mm] stetig differenzierbar. Die

> folge [mm](f_n)[/mm] sei punktweise konvergent gegen f:[a,b]-> [mm]\IR[/mm]
> und die Folge der ABleitungen [mm](f_n[/mm] ') sei gleichmäßig
> konvergent. Dann ist f differenzierbar und es gilt
>  [mm]\forall[/mm] x [mm]\in[/mm] [a,b] : f'(x)= [mm]lim_{n->\infty}[/mm] f'_n(x)

> Prop.:
>  Sei [mm]f_n \in[/mm] C([a,b]) [mm]\cap[/mm] D((a,b)) und [mm]f_n[/mm] ' [mm]\in[/mm] C([a,b])
>  und [mm]f_n[/mm] -> f [mm](n->\infty)[/mm] gleichmäßig

>  [mm]f_n'[/mm] -> g [mm](n->\infty)[/mm] gleichmäßig

>  Dann ist f [mm]\in[/mm] D([a,b]) und es gilt f' = g

Proposition 1 ist die allgemeinere der beiden. Man braucht die gleichmäßige Konvergenz der Funktionenfolge [mm] $(f_n)$ [/mm] nicht. Das allgemeinste Resultat lautet:

a) [mm] $f_n$ [/mm] alle differenzierbar (man braucht NICHT stetig differenzierbar)
b) [mm] $(f_n')$ [/mm] gleichmäßig konvergent gegen g
c) [mm] $(f_n)$ [/mm] ist in EINEM PUNKT punktweise konvergent.
------> [mm] $(f_n)$ [/mm] konv. gleichmäßig gegen eine differenzierbare Grenzfunktion f mit f' = g.

Aus: []S. 271


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]