www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - verständnis
verständnis < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verständnis: kompakt zusammenhängend
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 24.06.2009
Autor: simplify

hallo liebe leute,
ich hab da mal ne bitte zur förderung meines verständnisses im themenbereich kompakte, zusammenhängende mengen und deren bilder.
ich würde mich freuen wenn ihr mir ein paar beispiele geben könntet, und zwar für:

1. eine nicht stetige abbildung, die eine beliebige kompakte menge auf eine kompakte menge abbildet, d.h.: f(kompakt)=kompakt,aber f nicht stetig

2.das gleiche nur für zusammenhängend statt kompakt

und naja falls ich dann immernoch nicht drauf komme

3.eine nicht stetige abbildung bei der beide 1. und 2. gelten

wär euch seeeehr dankbar
LG

        
Bezug
verständnis: Modell
Status: (Antwort) fertig Status 
Datum: 16:29 Mi 24.06.2009
Autor: Al-Chwarizmi

Hallo,

Stell dir zwei Stäbe der Länge 2m vor, welche
identische Zahlenskalen von 0 bis 2 tragen.
Nun sägst du einen der Stäbe mitten entzwei,
drehst das eine der Teilstücke um und klebst
die Stücke wieder aneinander.

Wenn du nun die Skala auf dem unversehrten
Stab als x-Skala und die neu angeordnete Skala
auf dem anderen Stab als y-Skala nimmst,
hast du ein Modell für eine Abbildung der
gewünschten Sorte.  

Natürlich lässt sich ein solcher Prozess dann
auch durch Formeln beschreiben.

LG    Al-Chw.


Bezug
                
Bezug
verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 24.06.2009
Autor: simplify

danke erstmal, aber es geht mir halt gerade um diese formeln...
damit ich das halt nicht nur optisch nachvollziehen kann, sondern (wie es ja in der mathematik sehr wichtig ist) auch anhand von formeln...
LG

Bezug
                        
Bezug
verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 24.06.2009
Autor: Al-Chwarizmi


> danke erstmal, aber es geht mir halt gerade um diese
> formeln...
>  damit ich das halt nicht nur optisch nachvollziehen kann,
> sondern (wie es ja in der mathematik sehr wichtig ist) auch
> anhand von formeln...
>  LG


Hallo simplify,

Wenn wir das Stück von 0 bis 1 unverändert
gelassen haben, gilt in diesem Bereich y=x.
Intervall von 1 bis 2 umgekehrt bedeutet:
1 wird auf 2 abgebildet und 2 auf 1. Die
Funktion ist linear, also brauchen wir in
diesem Intervall die Gleichung der Geraden,
welche durch die Punkte (1/2) und (2/1)
geht. Diese kannst du wohl selber aufstellen ...

Insgesamt hat man dann eine Funktion

      [mm] f(x)=\begin{cases} x & \mbox{für } 0\le x\le 1 \\ ........, & \mbox{für } 1
Dies ist dann natürlich nur ein Beispiel mit
eindimensionalen Mengen, aber in ganz
analoger Weise kann man z.B. entsprechende
Abbildungen für Mengen in [mm] \IR^2 [/mm] oder [mm] \IR^3 [/mm]
oder höheren Dimensionen basteln.

LG   Al-Chw.


Bezug
                                
Bezug
verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mi 24.06.2009
Autor: simplify

hmmm... lieg ich jetz richtig bei der annahme, dass f(x)=-x+3 ist ??? (im zweiten fall natürlich)



Bezug
                                        
Bezug
verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:28 Do 25.06.2009
Autor: Al-Chwarizmi


> hmmm... lieg ich jetz richtig bei der annahme, dass
> f(x)=-x+3 ist ??? (im zweiten fall natürlich)

    [daumenhoch]   Yep.   :-)

Bezug
                                
Bezug
verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mi 24.06.2009
Autor: simplify

ok, das diese funktion kompakt ist, ist klar, denn sie ist beschränkt und abgeschlossen.
aber zusammenhängend bereitet mir noch kopfschmerzen...
das würde ja heißen, das ich das intervall [0,2]...auf dem die funktion def. ist... ja in zwei offene disjunkte teilintervalle ( bzw. Mengen A,B)aufteilen kann, sodass deren vereinigung wieder das ürsprüngliche intervall [0,2] (bzw. menge C) ist und sodass deren schnitt leer ist  woraus dann folgen würde, dass A leer oder B leer

... das mit den mengen ist viell. etwas verwirrend...sorry

zumindest ist das meine definition, wenn ich mich nich irre...

aber ich kann das intervall doch nicht in zwei offene, disjunkte teile teilen, oder doch ???

LG
P.S.: vielen dank für deine hilfe

Bezug
                                        
Bezug
verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 Do 25.06.2009
Autor: Al-Chwarizmi


> ok, das diese funktion kompakt ist, ist klar, denn sie ist
> beschränkt und abgeschlossen.

Nicht die Funktion ist kompakt, sondern ihre
Definitions- und ihre Bildmenge.

>  aber zusammenhängend bereitet mir noch kopfschmerzen...
>  das würde ja heißen, das ich das intervall [0,2]...auf dem
> die funktion def. ist... ja in zwei offene disjunkte
> teilintervalle ( bzw. Mengen A,B)aufteilen kann, sodass
> deren vereinigung wieder das ürsprüngliche intervall [0,2]
> (bzw. menge C) ist und sodass deren schnitt leer ist  
> woraus dann folgen würde, dass A leer oder B leer
>  
> ... das mit den mengen ist viell. etwas verwirrend...sorry
>  
> zumindest ist das meine definition, wenn ich mich nich
> irre...
>  
> aber ich kann das intervall doch nicht in zwei offene,
> disjunkte teile teilen, oder doch ???
>  
> LG
>  P.S.: vielen dank für deine hilfe

Hallo,

die Aufteilung des Intervalls diente ja nur dazu,
die Abbildung zu definieren.

Insgesamt bildet f das abgeschlossene Intervall
C=[0,2] auf C=[0,2] ab, also sind Definitions-
und Bildmenge kompakt.
Die Funktion ist aber nicht auf ganz C stetig.

(Sie ist zwar nur an einer einzigen Stelle
unstetig. Möchtest du diesbezüglich eine
"schlimmere" Funktion, so könnte man
so etwas ohne weiteres basteln, z.B. eine
Funktion, welche an keiner einzigen Stelle
stetig ist ...)


LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]