www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - verschiedene Topologien
verschiedene Topologien < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verschiedene Topologien: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:44 Mi 05.10.2011
Autor: physicus

Hallo Forum

Wenn ich eine Funktion $\ H: C [mm] \subset \IR \to [/mm] L(X) $ habe, wobei $\ C $ eine kompakte Teilmenge von $\ [mm] \IR [/mm] $ ist und $\ L(X) $ der Raum aller beschränkten linearen Operatoren.
Wenn ich weiss, dass folgendes gilt:

$\ H $ ist stetig für die kompakte Konvergenz, d.h. folgende Abbildung ist gleichmässig stetig auf jeder Kompakten Teilmenge $\ K [mm] \subset [/mm] X $.

$\ [mm] K\times [/mm] C [mm] \ni (\alpha,x) \mapsto H(\alpha)(x) [/mm] $

D.h. heisst ja, $\ [mm] \forall \epsilon [/mm] >0 [mm] \forall [/mm] x,y [mm] \in [/mm] C [mm] \exists \delta [/mm] > 0$ so dass:

$\ [mm] \parallel H(\alpha)(x) [/mm] - [mm] H(\beta)(y) \parallel [/mm] < [mm] \epsilon [/mm] $ wann immer
$\ [mm] |\alpha -\beta| [/mm] < [mm] \delta [/mm] $ UND $\ [mm] \parallel [/mm] x - y [mm] \parallel [/mm] < [mm] \delta [/mm] $.

Jetzt möchte ich gerne die Stetigkeit der Punktweise Konvergenz folgern.
Also:
$\ [mm] \forall \epsilon [/mm] > 0 [mm] \exists \delta [/mm] >0 $ so dass $\ [mm] \forall \alpha, \beta \in [/mm] C $ mit $\ [mm] |\alpha [/mm] - [mm] \beta [/mm] |  < [mm] \delta \Rightarrow \parallel H(\alpha)(x)-H(\beta)(x) \parallel [/mm] < [mm] \epsilon [/mm] $ für alle $x [mm] \in [/mm] X $.

Stimmt diese Definitionen so weit? Ich bin mir nicht ganz sicher mit der Definition von der kompakten Konvergenz. Spielt es dort keine Rolle, welchen Abstand $\ x,y $ haben?

Zum Beweis: wähle ich dann einfach das $\ [mm] \delta [/mm] $ der kompakten Konvergenz und die kompakte Menge $\ C [mm] :=\{x\} [/mm] $ oder wie macht man das ?

Gruss

physicus

        
Bezug
verschiedene Topologien: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Do 20.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]