vereinigung zweier basen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:51 Fr 27.05.2011 | Autor: | froggy60 |
Aufgabe | Sei V ein K-Vektorraum mit Basis gegeben durch {vi | 1 [mm] \le [/mm] i [mm] \le [/mm] n} und W ein K-Vektorraum mit Basis gegeben durch {wj | 1 [mm] \le [/mm] j [mm] \le [/mm] m}.
Zeigen Sie, dass {(vi; 0) | 1 [mm] \le [/mm] i [mm] \le [/mm] n} [mm] \cup [/mm] {(0; wj ) | 1 [mm] \le [/mm] j [mm] \le [/mm] m} eine Basis von Vx W ist.Insbesondere gilt dim(V x W) = dim(V ) + dim(W);
falls dim(V) und dim(W) [mm] <\infty. [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich versuche mich seit mehreren stunden an dieser aufgabe und verwerfe jeden ansatz da ich nirgends weiter komme. wie fange ich am besten an? muss ich anfangen vektorraumeigenschaften für die vereinigung nachzurechnen? oder doch mit dem dimensionssatz? dass v x w ein vektorraum ist habe ich bereits bewiesen... sorry steh echt total am schlauch und bin voll verzweifelt :(
edit: habe versucht es korrekt mit den formeln darzustellen. hoffe es ist besser jetzt. nur den index hab ich leider nicht hinbekommen (bei v, w soll das i bzw j im index stehen)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:38 Sa 28.05.2011 | Autor: | leduart |
Hallo
dein post ist fuer mich zumindest nicht lesbar, du hast irgendwelche komischen Zeichen auf deinem keyboard benutzt? sieh ihn die nochmal an und schreib die Frage mit dem editor.
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 So 29.05.2011 | Autor: | meili |
Hallo froggy,
> Sei V ein K-Vektorraum mit Basis gegeben durch [mm]\{v_i | 1 \le i \le n \}[/mm] und W ein K-Vektorraum mit Basis gegeben durch
> [mm]\{w_j | 1 \le j \le m \}[/mm].
> Zeigen Sie, dass [mm]\{(v_i; 0) | 1 \le i \le n \} \cup \{(0; w_j ) | 1 \le j \le m \}[/mm] eine Basis von V x W
> ist.Insbesondere gilt dim(V x W) = dim(V ) + dim(W);
> falls dim(V) und dim(W) [mm]<\infty.[/mm]
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> ich versuche mich seit mehreren stunden an dieser aufgabe
> und verwerfe jeden ansatz da ich nirgends weiter komme. wie
> fange ich am besten an? muss ich anfangen
> vektorraumeigenschaften für die vereinigung nachzurechnen?
Nein, die Vereinigung [mm] $\{(v_i; 0) | 1 \le i \le n\} \cup\{(0; w_j ) | 1 \le j \le m \}$ [/mm] soll doch eine Basis von $V [mm] \times [/mm] W$ sein.
Dazu ist zu zeigen, dass die Vektoren linear unabhängig sind, und
dass jeder Vektor $y [mm] \in [/mm] V [mm] \times [/mm] W$ sich als Linearkombination der Basisvektoren darstellen lässt.
> oder doch mit dem dimensionssatz? dass v x w ein vektorraum
> ist habe ich bereits bewiesen... sorry steh echt total am
> schlauch und bin voll verzweifelt :(
Ja, Dimensionssatz für $dim(V [mm] \times [/mm] W) = dim(V ) + dim(W)$.
> edit: habe versucht es korrekt mit den formeln
> darzustellen. hoffe es ist besser jetzt. nur den index hab
> ich leider nicht hinbekommen (bei v, w soll das i bzw j im
> index stehen)
mit dem Index geht das so: [mm] $v_i$ [/mm]
Gruß
meili
|
|
|
|