www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - untervektorräume
untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

untervektorräume: r3 in r4
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:25 Fr 23.01.2009
Autor: hummelhans

Aufgabe
Zeigen Sie, dass es sich bei den folgenden Teilmengen des R4 um Unterraume des R3 handelt:

U= ( [mm] \vektor{x1 \\ x2 \\ x3 \\ x4} \in \IR^{4} [/mm] | x2 + x3 + x4 = 0 )

W= ( [mm] \vektor{x1 \\ x2 \\ x3 \\ x4} \in \IR^{4} [/mm] | x1 + x2  = 0, x3 = 2 * x4 )

hallo, wie prüfe ich denn ob, die vektoren in r3 liegen bzw U eine teilmenge von r3 ist? habe da etwas schwierigkeiten, wegen der anschaulichkeit.
danke

        
Bezug
untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Fr 23.01.2009
Autor: schachuzipus

Hallo Julian,

> Zeigen Sie, dass es sich bei den folgenden Teilmengen des
> R4 um Unterraume des R3 handelt:
>  
> $U= [mm] \left\{\vektor{x_1 \\ x_2 \\ x_3 \\ x_4} \in \IR^{4} \mid x_2 + x_3 + x_4 = 0\right\}$ [/mm]

Indizes kriegst du mit dem Unterstrich _ hin, Mengenklammern mit \{...\}

>  
> W= ( [mm]\vektor{x1 \\ x2 \\ x3 \\ x4} \in \IR^{4}[/mm] | x1 + x2  =
> 0, x3 = 2 * x4 )
>  hallo, wie prüfe ich denn ob, die vektoren in [mm] $\IR^3$ [/mm] liegen
> bzw U eine teilmenge von [mm] $\IR^3$ [/mm] ist? habe da etwas
> schwierigkeiten, wegen der anschaulichkeit.

Ich auch, das ist nämlich Unfug, die Vektoren in $U$ und $W$ haben doch 4 Komponenten, wie sollen die einen UVR des [mm] $\IR^3$ [/mm] bilden??

Du meinst bestimmt "... bilden einen UVR des [mm] $\IR^{\red{4}}$, [/mm] oder?

Ansonsten ist die Aussage sinnlos ;-)

Dazu rechne stur und stumpf die Unterraumkriterien nach!

Welche sind das?

Welche 3 Punkte sind zu zeigen?

Das kannst du ganz geradeheraus ausrechnen.

Schreibe dir also die Unterraumkriterien hin und lege einfach mal los ;-)

Wenn du irgendwo hängen bleibst, schreibe hier auf, wie weit du kommst und stelle konkrete Fragen zum Hänger


LG

schachuzipus

>  danke


Bezug
                
Bezug
untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Fr 23.01.2009
Autor: hummelhans

gut zu wissen, danke! wie man die kriterien nachrechnet weiss ich, hatte nur mit dem r3 probleme, aber unser prof. macht sehr oft fehler auf seine übungsblätter.

Bezug
                
Bezug
untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Sa 24.01.2009
Autor: hummelhans

hmm, habe nochmal ein bisschen rumüberlegt und bin mir wieder unsicher ob es denn nicht doch stimmen könnte das elemente des R4 einen unterraum des R3 bilden können. z.b ist doch eine ebene, unterraum des R4 und auch unterraum des R3 unter gewissen umständen. oder liege ich da total falsch?


Bezug
                        
Bezug
untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Sa 24.01.2009
Autor: angela.h.b.


> hmm, habe nochmal ein bisschen rumüberlegt und bin mir
> wieder unsicher ob es denn nicht doch stimmen könnte das
> elemente des R4 einen unterraum des R3 bilden können. z.b
> ist doch eine ebene, unterraum des R4 und auch unterraum
> des R3 unter gewissen umständen. oder liege ich da total
> falsch?
>  

Hallo,

im [mm] \IR^4 [/mm] gibt es nichttriviale Unterräume der Dimensionen 1,2,3,

also beispielsweise Ebenen, 2-dimensionale Unterräume. Aber diese Unterräumes bestehen allessamt aus Elementen des [mm] \IR^4, [/mm] sind also Spalten mit 4 Einträgen.


Der [mm] \IR^3 [/mm] enthalt auch 2-dimensionale Unterräume, seine Elemente jedoch sind Spalten mit drei Einträgen.

Der [mm] \IR^4 [/mm] und der [mm] \IR^3 [/mm] haben kein einziges gemeinsames Element.


Falls Deine Kenntnisse soweit gediehen sind: wenn Du einen 2-dim Unterraum des [mm] \IR^3 [/mm] und einen des [mm] \IR^4 [/mm] hast, so sind diese jedoch isomorph.

Gruß v. Angela

Bezug
                                
Bezug
untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Sa 24.01.2009
Autor: hummelhans

vielen dank, das dachte ich an sich auch, war mir aber nicht so sicher.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]