unterraum/orthogonal < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 17:18 Mo 21.11.2005 | Autor: | bobby |
Hallo!
Vielleicht wisst ihr ein bisschen was zu der folgenden Aufgabe, ich komme hier irgendwie nicht weiter mit meinen Definitionen und sonstigem Wissen...
Seien S,T Teilmengen und U,W Unterräume des K-Vektorraum V. Zeige:
1) Ist S [mm] \subseteq [/mm] T , so gilt [mm] T^{\perp} \subseteq S^{\perp} [/mm] .
2) [mm] (U+W)^{\perp} [/mm] = [mm] U^{\perp} \cap W^{\perp} [/mm] .
3) Ist V endlich dimensional, so gilt (U [mm] \cap W)^{\perp} [/mm] = [mm] U^{\perp} [/mm] + [mm] W^{\perp} [/mm] .
4) Ist V endlich dimensional, so folgt aus V = U [mm] \oplus [/mm] W die Aussage
[mm] V^{*} [/mm] = [mm] U^{\perp} \oplus W^{\perp} [/mm] .
|
|
|
|
> Hallo!
> Vielleicht wisst ihr ein bisschen was zu der folgenden
> Aufgabe, ich komme hier irgendwie nicht weiter mit meinen
> Definitionen und sonstigem Wissen...
Hallo,
es wäre hilfreich, wenn Du verraten würdest, was Du weißt, welche Definitionen Du gerne verwenden würdest, wo Dein Problem damit ist, was Du nicht verstanden hast.
Was ist ein Unterraum? Wie weist man die Unterraumeigenschaft nach?
Wann sind zwei Vektoren orthogonal?
Was ist der Orthogonalraum zu einem Raum?
Basis?
Basisergänzung?
>
> Seien S,T Teilmengen und U,W Unterräume des K-Vektorraum V.
> Zeige:
> 1) Ist S [mm]\subseteq[/mm] T , so gilt [mm]T^{\perp} \subseteq S^{\perp}[/mm]
Wie hast Du angefangen, was mußt Du überhaupt zeigen? Daß [mm] T^{\perp} [/mm] und [mm] S^{\perp} [/mm] jeweils Unterräume von V sind, ist das in der Vorlesung drangewesen? Bestimmt, oder?
Wie gesagt: wenn ich wüßte, wo genau es klemmt. ..Weder will ich ja überflüssigerweise bei Adam und Eva anfangen, und noch viel weniger möchte ich Dir die Aufgaben einfach vorrechen.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:57 Di 22.11.2005 | Autor: | bobby |
Also, ich bin soweit, dass ich sagen kann, dass [mm] S^{\perp}={f \in V^{stern} : f(s)=0 für s \in S} [/mm] gilt und analog zu [mm] T^{\perp}.
[/mm]
Mein Problem liegt dabei,
bei a) zu zeigen, dass wenn S Teilmenge von T ist, dass dann [mm] T^{\perp} [/mm] Teilmenge von [mm] S^{\perp} [/mm] sein soll.
bei b) weis ich gar nicht, wie diese Formel überhaupt zu stande kommt.
Wir haben in der Vorlesung nix dazu gemacht, nur die Definition wie sie oben steht notiert und das wars auch schon...
Wär nett wenn mir noch jemand helfen könnte dabei
|
|
|
|
|
Hallo!
Probier bei der ersten Aufgabe doch mal folgenden Ansatz:
Sei [mm] $f\in T^\perp$. [/mm] Dann ist $f(t)=0$ für alle [mm] $t\in [/mm] T$.
Was folgt daraus für $f(s)$ für [mm] $s\in [/mm] S$?
Bei der zweiten Aufgabe ist zu zeigen, dass [mm] $(U+W)^\perp \subseteq U^\perp\cap W^\perp$ [/mm] und [mm] $(U+W)^\perp \supseteq U^\perp\cap W^\perp$. [/mm] Der Ansatz ist im Prinzip wieder der gleiche:
[mm] "$\subseteq$":
[/mm]
Sei [mm] $f\in (U+W)^\perp$. [/mm] Also ist $f(u)=0$ für alle [mm] $u\in [/mm] U+W$. Insbesondere ist $f(u)=0$ für alle [mm] $u\in [/mm] U$ und $f(v)=0$ für alle [mm] $v\in [/mm] W$. Somit ist [mm] $f\in U^\perp\cap W^\perp$.
[/mm]
Wird dir das Konzept langsam klar? So kann man dann auch an die anderen Aufgaben heran gehen...
Gruß, banachella
|
|
|
|