www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - universelles Vektorbündel
universelles Vektorbündel < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

universelles Vektorbündel: Frage zum Beweis
Status: (Frage) überfällig Status 
Datum: 13:20 Fr 28.04.2006
Autor: jayjay2

Aufgabe
Betrachte folgenden Satz:
Sei X parakompakt (dh. X Hausdorffsch und für jede offene überdeckung von X existiert eine zerlegung der eins die dieser überdeckung untergeordnet ist.)
Dann gilt:
Die stetige Funktion [mm] [X, G_{n}] \to Vect^{n} (X)[/mm], mit [mm] [f] \mapsto f^{\*}(E_{n}) [/mm] ist bijektiv.

mit folgenden Bezeichnungen:
[mm] G_{n} [/mm] Grassmann-Mannigfaltigkeit für [mm] \IR^{\infty} [/mm] (also die Menge aller n-dimensionale Ebenen im [mm] \IR^{\infty}, [/mm] Definiert als Vereinigung über alle 'endlichen' Grassmann-Mfgk'en)
[mm] E_{n} [/mm] kanonisches Vektorbündel über [mm] G_{n} [/mm] definiert als Vereinigung von [mm] \{ (l,v) \in G_{n}(\IR^k) \times \IR^{k} | v \in l \} [/mm] für alle k [mm] \ge [/mm] n (mit schwacher Topologie)
[mm] Vect^{n}(X) [/mm] Menge aller n-dim. Vektorbündel über X
[X,Y] Menge der Homotopieklassen von f: X [mm] \to [/mm] Y
[mm] f^{\*}(X) [/mm] zurückgezogenes Vektorbündel von X (nach f)

Die Frage bezieht sich auf einen Teil des Beweises wo man folgendes zeigen will:
Sei p: E [mm] \to [/mm] X ein n-dim. Vektorbündel. Dann gilt:
falls eine stetige Funktion [mm]g: E \to \IR^{\infty}[/mm] existiert die faserweise linear und injektiv ist, dann existiert ein Isomorphismus zwischen E und [mm] f^{\*}(E_{n}) [/mm]

um das ganze zu zeigen definieren wir eine Fkt [mm]f: X \to G_{n}[/mm] mit [mm]f(x) := g(p^{-1}(x))[/mm] (dann erhält man ein kommutatives Diagramm, woraus man die Existenz des Isomorphismus folgern kann)
Nun stellt sich die Frage wieso diese Funktion f stetig sein soll.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
universelles Vektorbündel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 06.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]