www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - unitäre Matrix
unitäre Matrix < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unitäre Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:22 Mo 20.06.2011
Autor: sissenge

Aufgabe
Sind die folgenden Matrizen diagonalisierbar durch eine unitäre matrix? Begründen Sie Ihre Antwort.

[mm] A=\pmat{ 4 & i&-1 \\ 0&3 & i\\5i&0&-2 } [/mm]

Hinweis: Überprüfen Sie, ob diese Matrizen normal sind.

Also ich habe mich jetzt mal schlau gemacht, was es heißt wenn eine matrix normal ist:

Das heißt wenn das Produkt aus Matrix A und deren komplex transponierte matrix vertauschbar ist.

Aber ich weiß nicht wie ich das überprüfen kann also was heißt ihre KOMPLEX transponierte Matrix??


        
Bezug
unitäre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Mo 20.06.2011
Autor: Lippel

Hallo,

du musst testen, ob die Matrix mit ihrer Adjungierten kommutiert. Dann kannst du den Spektralsatz anwenden.
[]Adjungierte Matrix.

LG Lippel

Bezug
                
Bezug
unitäre Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mo 20.06.2011
Autor: sissenge

Ich hab mir das auf Wiki durchgelesen aber ich versteh nicht wie ich das überprüfen kann....muss ich einfach [mm] A*x=A^H*x [/mm]
setzten und dann versuchen das Gleichungssystem zu lösen??

Bezug
                        
Bezug
unitäre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mo 20.06.2011
Autor: fred97

Gegeben A.

Jetzt konjugiere jeden Eintrag in A. Dies liefert Dir eine Matrix B. Nun berechne [mm] B^T. [/mm] Dann ist

            [mm] A^H=B^T. [/mm]

Jetzt berechne [mm] $A*A^H$ [/mm] und dann [mm] $A^H*A$ [/mm]

Gilt [mm] $A*A^H=A^H*A$, [/mm] so ist A normal.

FRED

Bezug
                                
Bezug
unitäre Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 Mo 20.06.2011
Autor: sissenge

Jetzt steht bei mir in der Angabe: [...] diagonalisierbar durch eine unitäre Matrix, d.h. existiert [mm] U\in [/mm] U(n) mit UAU^-1 [mm] \in [/mm] Mat(n,C) diagonal? Begründen Sie Ihre Antwort.

Kann ich das dann trotzdem so rechnen, wie ihr mir das vorgeschlagen habt oder sollte ich das dann lieber anders machen?

Zur a) [mm] A=\pmat{4&i&-1\\0&3&i\\5i&0&-2} [/mm]  
[mm] B=\pmat{4&-i&-1\\0&3&-i\\-5i&0&-2} [/mm]
[mm] B^T=\pmat{4&0&-5i\\-i&3&0\\-1&-i&-2} [/mm]

[mm] A*A^H=\pmat{18&4i&2-20i\\-4i&10&-2i\\2+20i&2i&29} [/mm]
[mm] A^H*A=\pmat{41&4i&-4+10i\\-4i&10&4i\\-4-10i&-4i&6} [/mm]

Wenn die Ergebnisse stimmen, dann ist A nicht diagonalisierbar duch eine unitäre Matrix?

Bezug
                                        
Bezug
unitäre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mo 20.06.2011
Autor: MathePower

Hallo sissenge,

> Jetzt steht bei mir in der Angabe: [...] diagonalisierbar
> durch eine unitäre Matrix, d.h. existiert [mm]U\in[/mm] U(n) mit
> UAU^-1 [mm]\in[/mm] Mat(n,C) diagonal? Begründen Sie Ihre Antwort.
>  
> Kann ich das dann trotzdem so rechnen, wie ihr mir das
> vorgeschlagen habt oder sollte ich das dann lieber anders
> machen?
>  
> Zur a) [mm]A=\pmat{4&i&-1\\0&3&i\\5i&0&-2}[/mm]  
> [mm]B=\pmat{4&-i&-1\\0&3&-i\\-5i&0&-2}[/mm]
>  [mm]B^T=\pmat{4&0&-5i\\-i&3&0\\-1&-i&-2}[/mm]
>  
> [mm]A*A^H=\pmat{18&4i&2-20i\\-4i&10&-2i\\2+20i&2i&29}[/mm]
>  [mm]A^H*A=\pmat{41&4i&-4+10i\\-4i&10&4i\\-4-10i&-4i&6}[/mm]
>  
> Wenn die Ergebnisse stimmen, dann ist A nicht
> diagonalisierbar duch eine unitäre Matrix?


Die Ergebnisse und die Folgerung stimmen. [ok]


Gruss
MathePower

Bezug
                                                
Bezug
unitäre Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mo 20.06.2011
Autor: sissenge

Was mach ich aber, wenn ich eine matrix ohne i habe also eine nicht komplexe matrix? dann kann ich die ja nicht konjugieren.

[mm] A=\pmat{0&\bruch{1}{\wurzel{3}}&\bruch{2}{\wurzel{6}}\\\bruch{1}{\wurzel{2}}&\bruch{1}{\wurzel{3}}&\bruch{-1}{\wurzel{6}}\\\bruch{1}{\wurzel{2}}&\bruch{-1}{\wurzel{3}}&\bruch{1}{\wurzel{6}}} [/mm]

Bezug
                                                        
Bezug
unitäre Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Mo 20.06.2011
Autor: angela.h.b.


> Was mach ich aber, wenn ich eine matrix ohne i habe also
> eine nicht komplexe matrix? dann kann ich die ja nicht
> konjugieren.

Hallo,

doch, die Matrix kannst Du auch konjugieren - sie bleibt halt genauso.

Gruß v. Angela

>  
> [mm]A=\pmat{0&\bruch{1}{\wurzel{3}}&\bruch{2}{\wurzel{6}}\\ \bruch{1}{\wurzel{2}}&\bruch{1}{\wurzel{3}}&\bruch{-1}{\wurzel{6}}\\ \bruch{1}{\wurzel{2}}&\bruch{-1}{\wurzel{3}}&\bruch{1}{\wurzel{6}}}[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]