www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - ungleichungen
ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 07.11.2005
Autor: worromot

meine aufgabe:

(1- [mm] \bruch{2}{5})^n [/mm] < [mm] \Delta [/mm]

für delta soll 2,1,0.5,1/125 einsetzen.

betsimmen sie alle natürlichen zahlen N, so dass die ungleichung und alle natülichen zahlen n mit der eigenschaft n>=N erfüllt ist.

meine frage: wie löse ich die ungleichung nach n auf ?
ich komm nicht drauf vielleicht könnt ihr mir auf sprünge helfen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
ungleichungen: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 07.11.2005
Autor: MathePower

Hallo worromot,

[willkommenmr]

> meine aufgabe:
>  
> (1- [mm]\bruch{2}{5})^n[/mm] < [mm]\Delta[/mm]
>  
> für delta soll 2,1,0.5,1/125 einsetzen.
>  
> betsimmen sie alle natürlichen zahlen N, so dass die
> ungleichung und alle natülichen zahlen n mit der
> eigenschaft n>=N erfüllt ist.
>  
> meine frage: wie löse ich die ungleichung nach n auf ?
>  ich komm nicht drauf vielleicht könnt ihr mir auf sprünge
> helfen!

Logarithmiere beide Seiten. Beachte daß der Logarithmus von [mm]1\;-\;\frac{2}{5}[/mm] kleiner 0 ist. Demzufolge dreht sich das Vorzeichen um, wenn Du durch diese Zahl dividierst.

Gruß
MathePower


Bezug
                
Bezug
ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mo 07.11.2005
Autor: worromot

kannst du mir bitte ziegen wie du das meinst mit dem logarithmus.
zeig mal ein beispeil bitte ?

Bezug
                        
Bezug
ungleichungen: Zwischenschritte
Status: (Antwort) fertig Status 
Datum: 16:38 Mo 07.11.2005
Autor: Roadrunner

Hallo worromot!


[mm] $\left(1-\bruch{2}{5}\right)^n [/mm] \ = \ [mm] \left(\bruch{3}{5}\right)^n [/mm] \ < \ [mm] \Delta$ [/mm]


Nun auf beiden Seiten logarithmieren und MBLogarithmusgesetz [mm] $\log_b\left(a^m\right) [/mm] \ = \ [mm] m*\log_b(a)$ [/mm] anwenden:

[mm] $\ln\left(\bruch{3}{5}\right)^n [/mm] \ < \ [mm] \ln(\Delta)$ [/mm]

[mm] $n*\ln\left(\bruch{3}{5}\right) [/mm] \ < \ [mm] \ln(\Delta)$ $\left| \ : \ \ln\left(\bruch{3}{5}\right) \ \red{< \ 0}$ $n \ \red{>} \ \bruch{\ln(\Delta)}{\ln\left(\bruch{3}{5}\right)} \ = \ \bruch{\ln(\Delta)}{\ln(3)-\ln(5)}$ Gruß vom Roadrunner [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]