www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - ungleichung
ungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 So 01.10.2006
Autor: AriR

Aufgabe
Seien $a,b,c,d>0$ reell.
Zeigen Sie
[mm] $\bruch{a}{b}\le\bruch{c}{d}\ \Rightarrow\ \bruch{a}b\le\bruch{a+c}{b+d}\le\bruch{c}d$. [/mm]

(frage zuvor nicht gestellt)

Hey leute, versuch mich gerade an einer alten aufgabe, komme aber irgendwie nicht auf die lösung +g+

kann mir viell einer von euch helfen?

also um zu zeigen, dass [mm] \bruch{a}b\le\bruch{a+c}{b+d} [/mm]

hab ich gedacht, zeigt man, dass [mm] \bruch{a+c}{b+d}\le\bruch{a}b+\bruch{c}d [/mm]

naja wäre nett, wenn mir einer helfen könnte :)

Gruß Ari

        
Bezug
ungleichung: Tipp
Status: (Antwort) fertig Status 
Datum: 11:10 So 01.10.2006
Autor: leonhard

Ich möchte die Aufgabe nicht vorlösen, daher ein Tipp:

Die Hypothese ist äquivalent zu [mm] $ad\leq [/mm] bc$.
Wozu ist [mm] $\frac{a}{b}\leq\frac{a+c}{b+c}$ [/mm] äquivalent?

Leonhard

Bezug
                
Bezug
ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 So 01.10.2006
Autor: AriR

jo danke ich habs jetzt glaub ich :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]