www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - uneigentliches Integral
uneigentliches Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 07:46 Do 03.01.2019
Autor: sancho1980

Aufgabe
Berechnen Sie [mm] \integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx} [/mm]

Hallo!

Laut Buch ist die korrekte Lösung der Aufgabe: [mm] \infty. [/mm]
Allerdings komme ich auf:

[mm] \integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx} [/mm] = [mm] \integral_{1}^{\infty}{x^{-\bruch{1}{2}} dx} [/mm]

Ein Integral von [mm] x^{-\bruch{1}{2}} [/mm] ist [mm] -2x^{\bruch{1}{2}}, [/mm] also


[mm] \integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx} [/mm] = [mm] \limes_{f\rightarrow\infty} -2\wurzel{f} [/mm] -  [mm] (-2\wurzel{1}) [/mm] = [mm] -\infty. [/mm]

Wo liegt der Fehler?

        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Do 03.01.2019
Autor: fred97


> Berechnen Sie [mm]\integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx}[/mm]
>  
> Hallo!
>  
> Laut Buch ist die korrekte Lösung der Aufgabe: [mm]\infty.[/mm]
>  Allerdings komme ich auf:
>  
> [mm]\integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx}[/mm] =
> [mm]\integral_{1}^{\infty}{x^{-\bruch{1}{2}} dx}[/mm]
>  
> Ein Integral von [mm]x^{-\bruch{1}{2}}[/mm] ist [mm]-2x^{\bruch{1}{2}},[/mm]



Nein. Eine Stammfunktion ist [mm] 2x^{\bruch{1}{2}}, [/mm] also ohne Minuszeichen.



> also
>  
>
> [mm]\integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} dx}[/mm] =
> [mm]\limes_{f\rightarrow\infty} -2\wurzel{f}[/mm] -  [mm](-2\wurzel{1})[/mm]
> = [mm]-\infty.[/mm]
>  
> Wo liegt der Fehler?

Siehe oben.




Bezug
                
Bezug
uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 So 06.01.2019
Autor: sancho1980

Aufgabe
Berechnen Sie


[mm] \integral_{-1}^{0}{\bruch{1}{x} dx} [/mm]

Ok, das war geschusselt.
Noch kurz eine Frage zu einer ähnlichen Aufgabe.

Die vorgegeben Lösung ist [mm] -\infty. [/mm]

Ich komme hier auf:

[mm] \integral_{-1}^{0}{\bruch{1}{x} dx} [/mm] = [mm] \limes_{f\rightarrow0} \integral_{-1}^{f}{\bruch{1}{x} dx} [/mm] = [mm] \limes_{f\rightarrow0} [/mm] ln(f) - ln(-1) = - [mm] \infty [/mm] - ln(-1)

Wenn jetzt ln(-1) nicht definiert ist, kann man dann einfach schulterzuckend sagen, das Ergebnis ist [mm] -\infty [/mm] ?

Bezug
                        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 So 06.01.2019
Autor: tobit09

Hallo sancho1980!


> Ich komme hier auf:
>  
> [mm]\integral_{-1}^{0}{\bruch{1}{x} dx}[/mm] =
> [mm]\limes_{f\rightarrow0} \integral_{-1}^{f}{\bruch{1}{x} dx}[/mm]

Genau, es handelt sich um ein uneigentliches Integral.


> = [mm]\limes_{f\rightarrow0}[/mm] ln(f) - ln(-1)

Wie du selbst feststellst, sind ln(f) für f<0 und ln(-1) überhaupt nicht definiert.
Diese Zeile ist also schon sinnlos.


Eine Stammfunktion der Abbildung [mm] $\IR\setminus\{0\}\to\IR,\;x\mapsto\frac{1}{x}$ [/mm] ist gegeben durch [mm] $\IR\setminus\{0\}\to\IR,\;x\mapsto [/mm] ln(|x|)$.

Damit solltest du das Integral bestimmen können.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]