www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - unbestimmtes Integral
unbestimmtes Integral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmtes Integral: Substitutionsprobleme
Status: (Frage) beantwortet Status 
Datum: 20:31 So 18.11.2012
Autor: satzvonwiejehtdat

Aufgabe
[mm] \integral_{}^{}{sin^3(x)*cos^3(x) dx} [/mm]

Hallo zusammen,

ich bekomme bei unterschiedlicher Substitution von obiger Aufgabe unterschiedliche Ergebnisse.

Sollte bei folgenden Substitutionen nicht das Gleiche rauskommen?

u = cos(x)

= [mm] \bruch{1}{6}*cos^6(x) [/mm] - [mm] \bruch{1}{4}*cos^4(x) [/mm] + c

Hier kommt [mm] \integral_{}^{}{u^5 - u^3 du} [/mm] raus.

und bei

u = sin(x)

[mm] \bruch{1}{4}*sin^4(x) [/mm] - [mm] \bruch{1}{6}*sin^6(x) [/mm] + c

Hier kommt [mm] \integral_{}^{}{u^3 - u^5 du} [/mm] raus.

Stimmt irgendwie nicht überein wenn ich mir die Funktionen mal bei Wolfram Alpha anschaue...

Hat jemand einen Tipp was ich falsch gemacht hab?


Ich habe diese Frage bisher noch in keinem anderen Internetforum gestellt.

        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 So 18.11.2012
Autor: MathePower

Hallo satzvonwiejehtdat,


> [mm]\integral_{}^{}{sin^3(x)*cos^3(x) dx}[/mm]
>  Hallo zusammen,
>
> ich bekomme bei unterschiedlicher Substitution von obiger
> Aufgabe unterschiedliche Ergebnisse.
>  
> Sollte bei folgenden Substitutionen nicht das Gleiche
> rauskommen?
>  
> u = cos(x)
>  
> = [mm]\bruch{1}{6}*cos^6(x)[/mm] - [mm]\bruch{1}{4}*cos^4(x)[/mm] + c
>  
> Hier kommt [mm]\integral_{}^{}{u^5 - u^3 du}[/mm] raus.
>  
> und bei
>  
> u = sin(x)
>  
> [mm]\bruch{1}{4}*sin^4(x)[/mm] - [mm]\bruch{1}{6}*sin^6(x)[/mm] + c
>  
> Hier kommt [mm]\integral_{}^{}{u^3 - u^5 du}[/mm] raus.
>  
> Stimmt irgendwie nicht überein wenn ich mir die Funktionen
> mal bei Wolfram Alpha anschaue...
>  


Die beiden Stammfunktionen unterscheiden
sich doch nur um eine Konstante.


> Hat jemand einen Tipp was ich falsch gemacht hab?
>


Du hast nichts falsch gemacht.


>
> Ich habe diese Frage bisher noch in keinem anderen
> Internetforum gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]