www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - unbestimmt durch substitution
unbestimmt durch substitution < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 So 04.05.2008
Autor: chrisi99

Ich hätte eine etwas allgemeinere Frage:

kann man bei unbestimmten Integralen durch geeignete Substitution immer ein bestimmtes Integral erreichen (Grenzen mitsubstituieren)?

oder ist das in manchen Fällen nur durch Integration und nachfolgender Grenzwertbildung möglich?

bzw. hat es einen Nachteil durch Substitution zu verfahren, falls dies möglich ist (zusätzliche "Fallen")?

Lg
Chris

        
Bezug
unbestimmt durch substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 So 04.05.2008
Autor: koepper

Hallo,

präzisiere doch bitte mal, was du meinst.
Ich verstehe die Frage nämlich leider überhaupt nicht.
Ein unbestimmtes Integral ist eine Menge von Funktionen.
Ein bestimmtes Integral ist eine Zahl.
Durch eine Substitution kommt man nie von einem zum anderen.
Meinst du evtl. uneigentliche Integrale?

LG
Will

Bezug
                
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 So 04.05.2008
Autor: chrisi99

Verzeihung, du liegst richtig! Ich meine uneigentlich!

lg
Chris

Bezug
                        
Bezug
unbestimmt durch substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 05.05.2008
Autor: koepper

Hallo chris,

bitte fasse dich präziser, wenn du eine Antwort möchtest.
Gib Beispiele für was du sagen möchstest.

LG
Will

Bezug
                                
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Mo 05.05.2008
Autor: chrisi99

Aufgabe
bestimme, ob das Integral konvergiert:


[mm] \integral_{1}^{\infty}{(\bruch{cos(1/x)}{\wurzel{x}}) dx} [/mm]

hier könnte ich etwa mit x=1/t substituieren, dann wären die Grenzen x=1/t-> t=1/x 1 bis 0 ...


darf man (ich) das?

Bezug
                                        
Bezug
unbestimmt durch substitution: ist erlaubt
Status: (Antwort) fertig Status 
Datum: 23:42 Mo 05.05.2008
Autor: Loddar

Hallo chrisi!


[ok] Das ist okay und erlaubt.

Alternativ kannst Du das Integral erst unbestimmt lösen und anschließend resubstituieren.


Gruß
Loddar


Bezug
                                                
Bezug
unbestimmt durch substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Di 06.05.2008
Autor: chrisi99

danke für eure Hilfe!

Bezug
        
Bezug
unbestimmt durch substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Di 06.05.2008
Autor: chrisi99

Aufgabe
[mm] \integral_{0}^{1}{ \bruch{arctan(\wurzel{x})}{\wurzel{2x}}dx} [/mm]

darf ich eigentlich dieses Integral einfach von a bis 1 integrieren und nach dem Integrieren a "null setzen" (was ja nicht unbedingt ein Grenzübergang ist). In diesem Fall macht es (vom Ergebnis) keinen Unterschied und erspart zudem eine Menge schreibarbeit (in jeder Zeile lim ...) ..

lg

Bezug
                
Bezug
unbestimmt durch substitution: Alternative
Status: (Antwort) fertig Status 
Datum: 23:17 Di 06.05.2008
Autor: Loddar

Hallo Chris!


Alternativ kannst Du das Integral auch erst unbestimmt lösen und erst am Ende die Integrationsgrenzen einsetzen bzw. die entsprechende Grenzwertbetrachtung durchführen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]