www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - umwandlung in polarform
umwandlung in polarform < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umwandlung in polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 03.12.2009
Autor: MontBlanc

Aufgabe
Zeigen Sie, dass [mm] \bruch{1+cos(\theta)+i*sin(\theta)}{1-cos(\theta)+i*sin(\theta)}=cot\left(\bruch{\theta}{2}\right)*e^{i*\bruch{\theta-\pi}{2}} [/mm]

Hi,

also ich habe damit angefangen, den Bruch mit [mm] 1-cos(\theta)-i*sin(\theta) [/mm] zu multiplizieren um in Nenner eine reelle Zahl zu bekommen, das klappt auch, es ergibt sich:

[mm] \bruch{1-2isin(\theta)cos(\theta)+sin^2(\theta)-cos^2(\theta)}{2-2cos(\theta)} [/mm]

Jetzt habe ich verschiedene Sachen ausprobiert, zuerst der Halbwinkelsatz (heisst das so auf deutsch). Was ich meine ist [mm] sin(2*\bruch{\theta}{2})=2*sin(\bruch{\theta}{2})*cos(\bruch{\theta}{2}) [/mm]

Damit kriege ich zumindest [mm] cot(\bruch{\theta}{2}) [/mm] aber nicht den ausdruck danach...

Ist mein ansatz richtig ?

lg,

exeqter

        
Bezug
umwandlung in polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 03.12.2009
Autor: MathePower

Hallo eXeQteR,

> Zeigen Sie, dass
> [mm]\bruch{1+cos(\theta)+i*sin(\theta)}{1-cos(\theta)+i*sin(\theta)}=cot\left(\bruch{\theta}{2}\right)*e^{i*\bruch{\theta-\pi}{2}}[/mm]
>  Hi,
>  
> also ich habe damit angefangen, den Bruch mit
> [mm]1-cos(\theta)-i*sin(\theta)[/mm] zu multiplizieren um in Nenner
> eine reelle Zahl zu bekommen, das klappt auch, es ergibt
> sich:
>  
> [mm]\bruch{1-2isin(\theta)cos(\theta)+sin^2(\theta)-cos^2(\theta)}{2-2cos(\theta)}[/mm]
>  
> Jetzt habe ich verschiedene Sachen ausprobiert, zuerst der
> Halbwinkelsatz (heisst das so auf deutsch). Was ich meine
> ist
> [mm]sin(2*\bruch{\theta}{2})=2*sin(\bruch{\theta}{2})*cos(\bruch{\theta}{2})[/mm]
>  
> Damit kriege ich zumindest [mm]cot(\bruch{\theta}{2})[/mm] aber
> nicht den ausdruck danach...


Mit der Anwendung der Halbwinkelformeln liegst Du richtig.


>  
> Ist mein ansatz richtig ?


Zuerst mußt Du den komplexen Ausdruck etwas umformen,
dann kannst Du gegebenfalls die Halbwinkelformeln anwenden.

Beachte, dass Du auf den Nenner
auch die Halbwinkelformel anwenden mußt.


>  
> lg,
>  
> exeqter


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]