www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - umgekehrte Laplace-Trafo?
umgekehrte Laplace-Trafo? < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umgekehrte Laplace-Trafo?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Fr 07.11.2008
Autor: Slartibartfast

Aufgabe
Berechnen Sie:
[mm] $\mathcal{L}^{-1}(\frac{5}{s^2+1})$ [/mm]

Hallo zusammen,

was muss ich hier machen?
Bis jetzt hatte ich immer nur [mm] $\mathcal{L}$ [/mm] gegeben und mit folgendem Integral gelöst:

[mm] $F(s)=\integral_{0}^{\infty}{\sigma(t)*e^{-st} dt}$ [/mm]

Setz ich mein [mm] $\mathcal{L}^{-1}$ [/mm] für $F(s)$ ein und löse nach [mm] $\sigma(t)$ [/mm] auf? Wie würde ich dann das Integral auseinanderbekommen?

Sicherlich merkt man an meiner Fragestellung, dass ich eigentlich gar keine Ahnung davon habe, was ich tue. Ein paar erklärende Worte dazu wären klasse.

Gruß
Slartibartfast

        
Bezug
umgekehrte Laplace-Trafo?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Fr 07.11.2008
Autor: MathePower

Hallo Slartibartfast,

> Berechnen Sie:
>  [mm]\mathcal{L}^{-1}(\frac{5}{s^2+1})[/mm]
>  Hallo zusammen,
>  
> was muss ich hier machen?
>  Bis jetzt hatte ich immer nur [mm]\mathcal{L}[/mm] gegeben und mit
> folgendem Integral gelöst:
>  
> [mm]F(s)=\integral_{0}^{\infty}{\sigma(t)*e^{-st} dt}[/mm]
>  
> Setz ich mein [mm]\mathcal{L}^{-1}[/mm] für [mm]F(s)[/mm] ein und löse nach
> [mm]\sigma(t)[/mm] auf? Wie würde ich dann das Integral
> auseinanderbekommen?
>  
> Sicherlich merkt man an meiner Fragestellung, dass ich
> eigentlich gar keine Ahnung davon habe, was ich tue. Ein
> paar erklärende Worte dazu wären klasse.


Entwickle zunächst [mm]\bruch{5}{s^{2}+1}[/mm] in eine Reihe, in dem Du eine Polynomdivision durchführst.

Dann erhältst Du

[mm]\bruch{5}{s^{2}+1}=\summe_{k=0}^{\infty}a_{k}*f_{k}\left(s\right)[/mm]

Aufgrund der Linearität der Laplace-Transformation gilt:

[mm]\mathcal{L}^{-1}\left(\summe_{k=0}^{\infty}a_{k}*f_{k}\left(s\right)\right)=\summe_{k=0}^{\infty}a_{k}*\mathcal{L}^{-1}\left(f_{k}\left(s\right)\right)[/mm]

Dies kann man dann sicherlich auf Reihenentwicklungen von bekannten Funktionen zurückführen.

Wenn Du mehr dazu wissen willst: []Inverse Laplace-Transformation


>  
> Gruß
>  Slartibartfast


Gruß
MathePower

Bezug
                
Bezug
umgekehrte Laplace-Trafo?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Mo 10.11.2008
Autor: Slartibartfast

Hallo Mathepower,

mit Polynomdivision haben wir das noch nicht gemacht, wohl aber mit PBZ. Da mir das aber zu komplex ist und der PD-Ansatz sicher noch kommt, will ich das mal versuchen.

Meine Reihe wäre dann:
[mm] $-5\summe_{k=1}^{\infty}\bruch{(-1)^k}{s^{2k}}$ [/mm]

Aber wie funktioniert die Übertragung in den Zeitbereich? Gliedweise - klar, aber gibts dafür ne Regel?

Gruß
Slartibartfast

Bezug
                        
Bezug
umgekehrte Laplace-Trafo?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Di 11.11.2008
Autor: MathePower

Hallo Slartibartfast,

> Hallo Mathepower,
>  
> mit Polynomdivision haben wir das noch nicht gemacht, wohl
> aber mit PBZ. Da mir das aber zu komplex ist und der
> PD-Ansatz sicher noch kommt, will ich das mal versuchen.
>  
> Meine Reihe wäre dann:
>  [mm]-5\summe_{k=1}^{\infty}\bruch{(-1)^k}{s^{2k}}[/mm]


Die Reihe stimmt. [ok]


>  
> Aber wie funktioniert die Übertragung in den Zeitbereich?
> Gliedweise - klar, aber gibts dafür ne Regel?


Es ist dann

[mm]\mathcal{L}^{-1}\left(-5\summe_{k=1}^{\infty}\bruch{(-1)^k}{s^{2k}}\right)=\summe_{k=1}^{\infty}5*\left(-1\right)^{k+1}\cdot{}\mathcal{L}^{-1}\left(\bruch{1}{s^{2k}}\right)[/mm]

Demnach muss man zur Unterfunktion [mm]\bruch{1}{s^{2k}}[/mm] die Oberfunktion bestimmen.

Mit PBZ geht das so:

[mm]\mathcal{L}^{-1}\left(\bruch{5}{s^{2}+1}\right)= \mathcal{L}^{-1}\left(A*\bruch{1}{s+i}+B*\bruch{1}{s-i}\right)=A*\mathcal{L}^{-1}\left(\bruch{1}{s+i}\right)+B*\mathcal{L}^{-1}\left(\bruch{1}{s-i}\right)[/mm]

,wobei bei A und B aus

[mm]\bruch{5}{s^{2}+1}=\bruch{A}{s+i}+\bruch{B}{s-i}[/mm]

zu bestimmen sind.


>  
> Gruß
>  Slartibartfast


Gruß
MathePower

Bezug
                                
Bezug
umgekehrte Laplace-Trafo?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 Di 11.11.2008
Autor: Slartibartfast

Hallo Mathepower,

>
> Demnach muss man zur Unterfunktion [mm]\bruch{1}{s^{2k}}[/mm] die
> Oberfunktion bestimmen.

>

und genau daran scheitere ich. Wie geht sowas? Oder hast du ne Literaturermpfehlung?


> Mit PBZ geht das so:
>  
> [...]


Die Koeffizienten sind nicht das Problem.

A=-B mit [mm] $A=-\bruch{5}{2i}$ [/mm]

> [mm] $\mathcal{L}^{-1}\left(\bruch{1}{s\pm i}\right) [/mm] $

hier hängts dann wieder... kommt dann wieder die Reihenentwicklung? Aber dann hätte ich ja auf die PBZ verzichten können???


Gruß
Slartibartfast

Bezug
                                        
Bezug
umgekehrte Laplace-Trafo?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Di 11.11.2008
Autor: MathePower

Hallo Slartibartfast,

> Hallo Mathepower,
>  
> >
> > Demnach muss man zur Unterfunktion [mm]\bruch{1}{s^{2k}}[/mm] die
> > Oberfunktion bestimmen.
>  >
>  
> und genau daran scheitere ich. Wie geht sowas? Oder hast du
> ne Literaturermpfehlung?


Ich hab eine Korrespondenztabelle der Laplace-Integrale.


>  
>
> > Mit PBZ geht das so:
>  >  
> > [...]
>  
>
> Die Koeffizienten sind nicht das Problem.
>  
> A=-B mit [mm]A=-\bruch{5}{2i}[/mm]
>  
> > [mm]\mathcal{L}^{-1}\left(\bruch{1}{s\pm i}\right)[/mm]
>  
> hier hängts dann wieder... kommt dann wieder die
> Reihenentwicklung? Aber dann hätte ich ja auf die PBZ
> verzichten können???


Die Reihenentwicklung führt dann wieder auf die Bestimmung der Oberfunktion
zur Unterfunktion  [mm]\bruch{1}{s^{k}}[/mm]

Wie habt ihr das seither gemacht?



>  
>
> Gruß
>  Slartibartfast


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]