www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Übung Abbildungen
Übung Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übung Abbildungen: linear oder nicht?
Status: (Frage) beantwortet Status 
Datum: 11:21 Do 04.12.2008
Autor: Hav0c

Aufgabe
Ist die angegebene Abbildung linear?

a)  f : [mm] \IR^{2} \to \IR^{2} [/mm] , f(x, y) = (−y,−x)
b)  f : [mm] \IR^{2} \to \IR [/mm] , f(x, y) = x + y + 1
c)  f : [mm] \IR^{3} \to \IR, [/mm] f(x, y, z) = (x − 1) + (y − 1) − 2(z − 1).
d) -
e)  f : [mm] \IR \to \IR, [/mm] f(x) = |x|
f)  f : [mm] \IC \to \IC, [/mm] f(z) = [mm] \overline{z} [/mm]

Hier ist meine Frage worin der Unterschied zw.  [mm] \IR^{2} \to \IR^{2} [/mm]  und   [mm] \IR^{2} \to \IR [/mm]  und  [mm] \IR^{3} \to \IR [/mm] und  [mm] \IR \to \IR [/mm]  in Bezug aufs Lösen der Aufgabe besteht.
Danke im Vorraus.

        
Bezug
Übung Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Do 04.12.2008
Autor: angela.h.b.


> Ist die angegebene Abbildung linear?
>  
> a)  f : [mm]\IR^{2} \to \IR^{2}[/mm] , f(x, y) =
> (−y,−x)
>  b)  f : [mm]\IR^{2} \to \IR[/mm] , f(x, y) = x + y + 1
>  c)  f : [mm]\IR^{3} \to \IR,[/mm] f(x, y, z) = (x − 1) + (y
> − 1) − 2(z − 1).
>  d) -
> e)  f : [mm]\IR \to \IR,[/mm] f(x) = |x|
>  f)  f : [mm]\IC \to \IC,[/mm] f(z) = [mm]\overline{z}[/mm]
>  Hier ist meine Frage worin der Unterschied zw.  [mm]\IR^{2} \to \IR^{2}[/mm]
>  und   [mm]\IR^{2} \to \IR[/mm]  und  [mm]\IR^{3} \to \IR[/mm] und  [mm]\IR \to \IR[/mm]
>  in Bezug aufs Lösen der Aufgabe besteht.

Hallo,

es gibt keinen.

In allen Fällen ist die Gültigkeit der Linearitätsbedingung nachzuweisen bzw. zu widerlegen.

Was genau meinst Du mit Deiner Frage?

Gruß v. Angela


Bezug
                
Bezug
Übung Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Do 04.12.2008
Autor: Hav0c

f:  [mm] \IR^{2} \to \IR^{2} [/mm]
f: [mm] \IR^{2} \to \IR [/mm]  
f :  [mm] \IR^{3} \to \IR, [/mm]

meine frage ist: Gibt es da eine Unterschied fürs Lösen der Aufgabe? Du meintest NEIN! Wozu dient diese Angabe dann?

Bezug
                        
Bezug
Übung Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Do 04.12.2008
Autor: angela.h.b.


> f:  [mm]\IR^{2} \to \IR^{2}[/mm]
> f: [mm]\IR^{2} \to \IR[/mm]  
> f :  [mm]\IR^{3} \to \IR,[/mm]
>
> meine frage ist: Gibt es da eine Unterschied fürs Lösen der
> Aufgabe? Du meintest NEIN! Wozu dient diese Angabe dann?

Hallo,

diese Aufgabe dient dazu, daß Du Dich mit den Linearitätsbedingungen vertraut machst, sie anwenden kannst bei verschiedenen Funktionen, und auch ein Gespür für Linearität und Nichtlinearität entwickelst.

Gruß v. Angela



Bezug
                                
Bezug
Übung Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Do 04.12.2008
Autor: Hav0c

Tut mir leid aber ich glaub du hast dich verlesen angela :)
ich fragte wozu die Angabe  [mm] \IR^{2} \to \IR^{2} [/mm] dient, wenns kein Unterschied zum lösen zwischen  [mm] \IR^{2} \to \IR^{2} [/mm]  und [mm] \IR^{2} \to \IR [/mm] gibt

Bezug
                                        
Bezug
Übung Abbildungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Do 04.12.2008
Autor: angela.h.b.


> Tut mir leid aber ich glaub du hast dich verlesen angela
> :)
>  ich fragte wozu die Angabe  [mm]\IR^{2} \to \IR^{2}[/mm] dient,
> wenns kein Unterschied zum lösen zwischen  [mm]\IR^{2} \to \IR^{2}[/mm]
>  und [mm]\IR^{2} \to \IR[/mm] gibt

Hallo,

ich hab' das schon richtig gelesen und verstanden, glaube ich.

Definitions- und Wertebereich gibt man bei Funktionen üblicherweise an. Egal, ob es Unterschiede beim Lösen gibt oder nicht.

Und Du sollst eben mit solch verschiedenen Funktionen üben, damit Dein Gehirn nicht einrostet, bevor es richtig auf Touren gekommen ist.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]