www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Überprüfung der Konvergenz
Überprüfung der Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überprüfung der Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 So 05.02.2006
Autor: daBurn

Aufgabe
Für welche p>0 konvergiert die folgende Reihe, wann konvergiert sie absolut?

[mm] \summe_{k=1}^{ \infty} \bruch{(-1)^{k(k+1)/2}}{k^p} [/mm]

Es handelt sich hierbei um keine alternierende Reihe, demnach ist das Leibniz-Kriterium nicht anzuwenden. Sofort klar ist, dass die Reihe für p>1 absolut konvergiert (allg. harmonische Reihe nach Betragsbildung), aber konvergiert sie auch für p>0 wie es bei sehr ähnlichen Reihen der Fall ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Überprüfung der Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 07.02.2006
Autor: MatthiasKr

Hallo,

da die reihe zwar nicht im klassischen sinne alterniert, aber doch in einem erweiteren sinne (2 positiv, 2negativ,2 pos.....) denke ich , dass sie auch für $p>0$ konvergiert. schau mal in den beweis des leibnitz-kriteriums hinein.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]