www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Überdeckung
Überdeckung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Mi 13.07.2011
Autor: burk

hallo,

ich suche ein Beispiel einer offene Überdeckung eines offenen Quaders im [mm] R^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Gruß

Georg

        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Mi 13.07.2011
Autor: fred97


> hallo,
>  
> ich suche ein Beispiel einer offene Überdeckung eines
> offenen Quaders im [mm]R^2[/mm]


Ist Q ein offener Quader im [mm] \IR^2, [/mm] so ist [mm] \{Q\} [/mm] eine offene Überdeckung von Q (oder [mm] \{\IR^2\} [/mm] oder [mm] \{Q, \IR^2\} [/mm] oder ....)

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Gruß
>  
> Georg


Bezug
                
Bezug
Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 13.07.2011
Autor: burk

Hallo Fred, danke für deine Hilfe.

Könntest du bitte an einem Beispiel zeigen, wie man einen offenen Quader im [mm] R^2 [/mm] mit einer Folge von offenen Teilquadern überdecken kannn

Mich interessiert vor allem die Formel für die Folge

Schöne Grüße

Georg

Bezug
                        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Mi 13.07.2011
Autor: statler

Hallo,
ich gönne mir mal die Antwort:
Wenn Q der offene Quader ist, ist Q, Q, Q, ... die überdeckende Folge. Ist ja nicht schwer. Kann es sein, daß du eine Überdeckung suchst, die keine endliche Teilüberdeckung enthält? Das geht auch.
Für das Intervall (0, 1) wäre das die Folge (1/n, 1-(1/n)). Das müßtest du jetzt auf die Ebene umsetzen.
Gruß aus HH-Harburg
Dieter

Bezug
                                
Bezug
Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Mi 13.07.2011
Autor: burk

Hallo Dieter,

danke für die Hilfe.

Könntest du bitte deine Erläuterungen für die Ebene umsetzen, das wäre nett.

Schöne Grüße

Georg

Bezug
                                        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mi 13.07.2011
Autor: fred97


> Hallo Dieter,
>  
> danke für die Hilfe.
>  
> Könntest du bitte deine Erläuterungen für die Ebene
> umsetzen, das wäre nett.

Du mußt doch nur "kreuzen" !!!

Sei $Q:=(0,1) [mm] \times [/mm] (0,1)$

Setze [mm] $Q_n:= (\bruch{1}{n}, 1-\bruch{1}{n}) \times (\bruch{1}{n}, 1-\bruch{1}{n})$ [/mm]

Dann ist

                  [mm] $Q=\bigcup_{n=1}^{\infty}Q_n$ [/mm]

FRED

>  
> Schöne Grüße
>  
> Georg


Bezug
                                                
Bezug
Überdeckung: Bemerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Mi 13.07.2011
Autor: statler

Hallo!

> Dann ist
>
> [mm]Q=\bigcup_{n=1}^{\infty}Q_n[/mm]

Um Diskussionen auszuweichen, schlage ich vor, mit n = 3 anzufangen. Andernfalls hätte man (nach meinem Verständnis) zweimal die leere Menge dastehen.

Gruß
Dieter


Bezug
                                                        
Bezug
Überdeckung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Mi 13.07.2011
Autor: fred97


> Hallo!
>  
> > Dann ist
> >
> > [mm]Q=\bigcup_{n=1}^{\infty}Q_n[/mm]
>  
> Um Diskussionen auszuweichen, schlage ich vor, mit n = 3
> anzufangen. Andernfalls hätte man (nach meinem
> Verständnis) zweimal die leere Menge dastehen.

Hallo Dieter,

   .. die leere Menge ist offen ...

FRED

>  
> Gruß
>  Dieter
>  


Bezug
                                                                
Bezug
Überdeckung: Schon, ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Mi 13.07.2011
Autor: statler

... aber ist auch wirklich jedem Leser klar, daß das Intervall (1, 0) die leere Menge meint? Da wollte ich mich auf die völlig sichere Seite begeben.

Gruß aus dem Norden
Dieter

Bezug
                                                
Bezug
Überdeckung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mi 13.07.2011
Autor: burk

Hallo Fred,

vielen Dank für deine Hilfe, Super!

Schöne Grüße

Georg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]