www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Überabzählbarkeit von Mengen
Überabzählbarkeit von Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überabzählbarkeit von Mengen: Lösung für Hausaufgabe gesucht
Status: (Frage) für Interessierte Status 
Datum: 21:13 So 28.11.2004
Autor: Limeswissengeg0

Hallo!
Ich habe folgende Aufgabe gestellt bekommen:

Zeigen Sie:

(a) Ist M eine Menge, so gibt es keine surjektive Abbildung f: [mm] M\to \cal{P} [/mm] M ( gemeint ist die Potenzmenge)

hierbei weiß ich, dass ich das Gegenteil annehmen sollte und [mm] M_{0}:= [/mm] { x [mm] \in [/mm] M; x [mm] \not\in [/mm] f(x)} betrachten. Kann das aber trotzdem nicht lösen.

(b) [mm] \cal{P}(\IN) [/mm] ist überabzählbar

weiss nicht, wie ich das zeigen soll, es wäre echt super, wenn man mir das für diesen Fall zeigen könnte und ich mal ein allgemeines "zeigen sie" Konzept in meinen Schädel rein bekomme, weil in der Schule haben wir nie Beweise geführt und mein Prof in den Übungen kann das nicht so gut erklären, so mit Ansätzen und so...

und

(c) Zeigen sie: Die Menge aller endlichen Teilmengen von [mm] \IN [/mm] ist abzählbar.

Ich habe echt keinen Schimmer.

Ich danke denjenigen fleißigen Köpfen von euch schon mal im Vorraus, weil ich weiß ja, dass das alles eure Freizeit ist und ihr auch viel angenehmere Dinge tun könntet. DANKE!!!!!!!!!!!!
(ich beschäftige mich jetzt noch mit Linearer Algebra und Analytischer Geometrie...)
MfG
Limes




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Überabzählbarkeit von Mengen: verschoben ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 So 28.11.2004
Autor: informix

Hallo Limes,
[falschesforum]
ich verschiebe deine Frage in den Uni-Bereich!


Bezug
                
Bezug
Überabzählbarkeit von Mengen: Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:36 Mo 29.11.2004
Autor: Marcel

https://matheraum.de/read?i=28520

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]