www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - trognometrie
trognometrie < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trognometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 So 07.01.2007
Autor: sunnyboy123

Aufgabe
Bestimmen Sie ale Lösungen x, die im Intervall [-4;4] liegen. Runden sie ggf. auf 2 Dezimalen.
2cos x +sin(2x)=0
cos(2x)=cos x
sin²x=0,5sin x

SO meine frage wir haben 3 formel dazu bekomme wie wir sie lösen sollen.
cos²x+sin²x=1
sin(2x)=2sinx+cosx
cos(2x)=cos²x-sin²x
Nun kann das sein das ich manchaml mehr formeln anwenden muss?
und warum benütze ich eingentlich die formeln damit ich das eine wegbekomme das ist mir klar
ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
trognometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 So 07.01.2007
Autor: riwe


> Bestimmen Sie ale Lösungen x, die im Intervall [-4;4]
> liegen. Runden sie ggf. auf 2 Dezimalen.
>  2cos x +sin(2x)=0
>  cos(2x)=cos x
>  sin²x=0,5sin x
>  SO meine frage wir haben 3 formel dazu bekomme wie wir sie
> lösen sollen.
>  cos²x+sin²x=1
>  sin(2x)=2sinx+cosx
>  cos(2x)=cos²x-sin²x
>  Nun kann das sein das ich manchaml mehr formeln anwenden
> muss?

nein diese formeln reichen vollkommen aus.

>  und warum benütze ich eingentlich die formeln damit ich
> das eine wegbekomme das ist mir klar

wenn du mit das eine den sinus bzw. cosinus meinst, bist du auf dem richtigen weg.
z.b.

2cosx + sin(2x)=0
formel 2 anwenden
cosx(1+sinx)=0


Bezug
                
Bezug
trognometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 So 07.01.2007
Autor: sunnyboy123

Aufgabe

2cosx + sin(2x)=0
formel 2 anwenden
cosx(1+sinx)=0  

ja wenn ich jetzt die 2 formel anwende kommt doch
2cos x+2sinx * cos x=0
und dann muss ich doch ausklammern da kommt doch dann
cos x(2+2sin x)=0
stimmt das so?
danke

Bezug
                        
Bezug
trognometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 07.01.2007
Autor: riwe

richtig, und die 2 kannst du auch noch herausheben

Bezug
                                
Bezug
trognometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 So 07.01.2007
Autor: sunnyboy123

ja ok dann kommt ja
2cosx(1+sinx)=0 jetzt kann ich doch die 2 rüber
cos x(1+sinx)=0
substiution= u=1+sinx
u1=1,57
resubstitution sinx=u-1
stimmt das

Bezug
                                        
Bezug
trognometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 07.01.2007
Autor: riwe

???
ein produkt = 0, wenn einer oder beide faktoren = 0:
1.) [mm]cos(x) = 0 \to x = ?[/mm]
2.) [mm]1 + sin(x) = 0 \to sin(x) = -1 also nicht x = \frac{\pi}{2} sondern x = \frac{3\pi}{2}[/mm]
und achte darauf, ALLE lösungen im gegebenen intervall zu finden

Bezug
                                                
Bezug
trognometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 So 07.01.2007
Autor: sunnyboy123

ja somit ist
cos x=0
und sin x=1?
stimmt das

Bezug
                                                        
Bezug
trognometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 So 07.01.2007
Autor: riwe


> ja somit ist
> cos x=0
>  und sin x=1?
>  stimmt das

lies doch meinen beitrag!
da steht es ja eh, das RICHTIGE!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]