www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - tot diffbarkeit
tot diffbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tot diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Fr 09.05.2008
Autor: AriR

hey leute

wenn man sich die totale diffbarkeit anschaut, dann macht man da ja nichts anderes, als eine lin fkt an einen punkt einer funktion "anzulegen" wobei für den fehler gelten muss: [mm] \limes_{h\rightarrow 0}\bruch{r(h)}{||h||}=0 [/mm]

diese gesuchte lin abb ist aber immer eindeutig wenn ich mich nciht irre, nur warum folgt das aus [mm] \limes_{h\rightarrow 0}\bruch{r(h)}{||h||}=0 [/mm] ??

kann es nicht sein, dass ich eine lin abb finde für die gilt [mm] \limes_{h\rightarrow 0}\bruch{r(h)}{||h||}=0 [/mm] aber es noch eine weiter gibt für die der fehler "noch schneller" gegen 0 geht?

        
Bezug
tot diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Fr 09.05.2008
Autor: fred97

Nennen wir f die Funktion, die an der Stelle x total differenzierbar ist.
Ich vermute Du meinst mir r(h) folgendes:

    r(h)= f(x+h)-f(x)-Ah

wobei A die von Dir erwähnte lineare Abb. ist.
Es gilt also r(h)/||h||-->0 für h-->0.

Dann gilt (ich nehme an, Ihr hattet das in der Vorlesung):  f ist in x partiell differenzierbar ind A ist gerade die Jacobi-Matrix von f in x.
Damit ist A eindeutig bestimmt.

Gruß Fred


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]