www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Test-Forum" - test-anhang
test-anhang < Test-Forum < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

test-anhang: bla
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Sa 14.05.2005
Autor: Loddar

blabla

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Fr 06.01.2006
Autor: Jette87

ich muss das auch mal austesten

Bezug
                
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Mi 25.01.2006
Autor: MonoTon

15h rechnet der server jetzt schon an dem ding herum?!
wahnsinn. ich würde gerne wissen mit welchem teX-editor man solche riesenformels basteln kann ^^ ich glaube nicht dass diese formel, oder das was es einmal werden soll - in den nächsten paar stunden, ;-) mit dem editor von der page geschrieben wurde. da tippt man sich die finger fusslig.
aber das thema hab ich eh schon gepostet.

na gut-load weiterhin ^^

Bezug
        
Bezug
test-anhang: Riesenformel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 So 15.05.2005
Autor: Karl_Pech

[m]\left[ x=-{{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b }\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}}}}+3\,\sqrt{3}\,a^3\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} }\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left( 6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6 \,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\, \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b} \,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} +3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3 }}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{ 27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{ 2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\, \sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{ \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x=- {{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a ^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2 }\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{ \sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}} \right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^ 2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{ 12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}\right)^{{{1}\over{4}}}}} +{{\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\, a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\, \sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{4\, \sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4 -256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2 }\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{ 3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{ 12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256 \,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}} }+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+ {{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\, \left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{ 2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}} }\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b }\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^ 2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b }\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{ 3}}}}}\right)^{{{1}\over{4}}}}}+{{\sqrt{{{12\,\left({{\sqrt{27\,a^4- 256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{ 3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{ a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27 \,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1 }\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}} \right][/m]

Bezug
        
Bezug
test-anhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 15.05.2005
Autor: Karl_Pech


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]