www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - symmetrische Gruppe
symmetrische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 19.11.2007
Autor: johnny11

Aufgabe
Man zeige, dass die Fuktion f = 1/x und g = (x-1)/x eine Gruppe von Funktionen erzeugen, die zur symmetrischen Gruppe [mm] S_{3} [/mm] isomorph ist, wenn man als Verknüpfung die Zusammensetzung von Funktionen verwendet.

Ich habe nicht genau verstanden, was bei dieser Aufgabe verlangt wird.
Ich habe bereits mal die Elemente ausgerechnet, welche entstehen, wenn mal als Verknüfung die Zusammensetzung von Funktionen verwendet.
Das wären diese vier:

1/x;    (x-1)/x;     x/(x-1);    1-x

stimmt das? und was muss ich als nächstes tun?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
symmetrische Gruppe: Definitions-/Wertebereich?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 19.11.2007
Autor: zahlenspieler

Hallo Johny11,
damit eine Mene mit einer Verknüpfung überhaupt eine Gruppe bildet, muß sie bzgl. der Verknüpfung "abgeschlossen" sein, d.h. Du bleibst bei Deinen Rechnungen immer in der Menge drin. Steht in Deiner Aufgabenstellung irgendwas zum Definitions-/Wertebereich von f und g?
Mfg
zahlenspieler

Bezug
                
Bezug
symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mo 19.11.2007
Autor: johnny11

hallo zahlenspieler,
nein in der Aufgabe steht nichts vom Wertebereich und Bildbereich. Ich habe die ganze Aufgabe exakt hier hingeschrieben...

Bezug
                        
Bezug
symmetrische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mo 19.11.2007
Autor: schachuzipus

Hallo johnny11,

die Funktionen $f,g$ erzeugen eine Untergruppe U der Bijektionen von [mm] $\IR\setminus\{0,1\}$ [/mm] in sich.

Die Verknüpfung, die hier gemeint ist, ist die Komposition/Verkettung von Funktionen.

Also [mm] $f\circ [/mm] g$, [mm] $g\circ [/mm] f$, [mm] $g\circ [/mm] g$, [mm] $f\circ [/mm] f$

Dazu musst du mal ein bisschen rechnen, was denn $f,g$ so alles erzeugen.

zB. [mm] $(f\circ g)(x)=f(g(x))=\frac{1}{\frac{x-1}{x}}=\frac{x}{x-1}$ [/mm]

Da haste schon eine neue Funktion, nennen wir sie $h$

Dann weiter [mm] $f\circ [/mm] h$, [mm] $h\circ [/mm] f$, [mm] $g\circ h\circ [/mm] f$ usw. usf.

Alle möglichen Verkettungen probieren.

Du wirst schnell merken, dass du nicht beliebig viel Neues basteln kannst, insgesamt erhältst du nicht mehr als 6 Funktionen.

(Bedenke, dass die Verkettung von Funktionen assoziativ ist...)

Das muss ja auch so sein, wenn diese Gruppe isomorph zu [mm] $S_3$ [/mm] sein soll, denn [mm] $S_3$ [/mm] enthält ja auch 6 Elemente.

Stelle am besten mal die Gruppentafeln von [mm] $S_3$ [/mm] und von deiner Untergruppe U auf.

Dann überlege, wie du explizit einen Isomorphismus von [mm] $U\to S_3$ [/mm] konstruieren kannst.

Dazu musst du geschickt jedem Element von $U$ eines aus [mm] $S_3$ [/mm] zuordnen.

Dann hättest du konstruktiv schon die Bijektivität gebastelt, du musstaber auch darauf achten, dass deine Abbildung ein Homomorphismus ist...

Also ein bisschen knobeln....


Aber erstelle erst mal die Gruppentafeln, dann siehst du schon ne Menge...


Hilft das für's erste? ;-)


LG

schachuzipus

Bezug
                                
Bezug
symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Mo 19.11.2007
Autor: johnny11

hallo schachuzipus,
vielen dank vorerst mal.
also die 6 verschiedenen elemente habe ich unterdessen auch.
Nun werde ich also ein bisschen knobeln. :-)

Aber noch kurz eine andere Frage:
Gibt es eigentlich zwei isomorphe Gruppen, zwischen denen es mehr als einen Isomorphismus gibt?


Bezug
                                        
Bezug
symmetrische Gruppe: Beispiele dafür
Status: (Antwort) fertig Status 
Datum: 08:45 Di 20.11.2007
Autor: statler

Guten Morgen!

> Aber noch kurz eine andere Frage:
>  Gibt es eigentlich zwei isomorphe Gruppen, zwischen denen
> es mehr als einen Isomorphismus gibt?

Oh ja! Wenn du z. B. die Kleinsche Vierergruppe (das ist die Symmetriegruppe des Rechtecks) nimmst, dann hat die außer der Identität noch diverse andere Isomorphismen (die dann Automorphismen heißen) mit sich selbst.

Die zyklische Gruppe mit 4 Elementen hat ebenfalls einen nicht-trivialen Automorphismus.

Gruß aus HH-Harburg
Dieter

Bezug
                                
Bezug
symmetrische Gruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:35 Di 20.11.2007
Autor: johnny11

also die 6 Elemente sind bei mir folgende:

f, g, fg, gf, [mm] g^2, f^2. [/mm]
Stimmen diese?

Und wie sehen nun die Elemente von [mm] S_{3} [/mm] aus?
Sind das 1, x, [mm] x^2, [/mm] y, xy, x^2y? oder liege ich da komplett falsch?

Und das mit der Gruppentafel habe ich auch noch nicht ganz begriffen. Wie müsste diese dann aussehen?


Bezug
                                        
Bezug
symmetrische Gruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 22.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]