www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - surjektive Abbildung
surjektive Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektive Abbildung: Aufgabe / Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 27.10.2008
Autor: seamus321

Aufgabe
f:M [mm] \to [/mm] N  Zeigen Sie  f surjektiv [mm] \gdw [/mm] N\ f(A) [mm] \subset [/mm] f(M\ A)
für alle A [mm] \subset [/mm] M

Also, bei der Hinrichtung hatte ich folgende Gedanken:

y [mm] \in [/mm] N\ f(A) und x [mm] \in [/mm] (M\ A)
[mm] \Rightarrow [/mm] f(x) [mm] \in [/mm] f(M\ A) und da y= f(x)
gilt N\ f(A) [mm] \subset [/mm] f(M\ A)

Korrigiert mich bitte wenn ich damit falsch liege!
Für die Rückrichtung habe ich jedoch noch keine Lösung gefunden und wäre
sehr dankbar für jede Hilfe!

mfg Seamus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
surjektive Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mo 27.10.2008
Autor: angela.h.b.


> f:M [mm]\to[/mm] N  Zeigen Sie  f surjektiv [mm]\gdw[/mm] N\ f(A) [mm]\subset[/mm]
> f(M\ A)
> für alle A [mm]\subset[/mm] M

Hallo,

[willkommenmr].

Zu zeigen sind zwei Richtungen:

1. f surjektiv [mm] ==> [/mm] N\ f(A) [mm]\subset[/mm]  f(M\ A)  für alle A [mm]\subset[/mm] M

2. N\ f(A) [mm]\subset[/mm]  f(M\ A)  für alle A [mm]\subset[/mm] M ==> f surjektiv


Zu 1.

Voraussetzung: [mm] A\subseteq [/mm] M  und [mm] f:M\to [/mm] N surjektiv,
dh. für jedes [mm] n\in [/mm] N gibt es ein m [mm] \in [/mm] M mit f(m)=y

zu zeigen:

Dann gilt N\ f(A) [mm]\subset[/mm]  f(M\ A) ,

dh aus [mm] y\in [/mm] N\ f(A) folgt  f(M\ A)

Beweis:

Sei [mm] y\in [/mm] N\ f(A)  

==>

[mm] y\in [/mm] N und [mm] y\not\in [/mm] f(A)

==>

(es gibt ein [mm] x\in [/mm] M mit ...  )  und (für  alle [mm] x\in [/mm] A gilt ...)

==>

...

Versuch Dich mal dran.


Schreibe für die andere Richtung genau auf, was Voraussetzung ist und was Du zeigen möchtest, ähnlich wie oben.

Dann erst - wenn nämlich klar ist, worauf Du zusteuern mußt - beginne mit dem Beweis.

Gruß v. Angela





>  Also, bei der Hinrichtung hatte ich folgende Gedanken:
>  
> y [mm]\in[/mm] N\ f(A) und x [mm]\in[/mm] (M\ A)
>  [mm]\Rightarrow[/mm] f(x) [mm]\in[/mm] f(M\ A) und da y= f(x)
> gilt N\ f(A) [mm]\subset[/mm] f(M\ A)
>  
> Korrigiert mich bitte wenn ich damit falsch liege!
>  Für die Rückrichtung habe ich jedoch noch keine Lösung
> gefunden und wäre
>  sehr dankbar für jede Hilfe!
>  
> mfg Seamus
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]